编辑:
2014-05-12
一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。
如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。
6.黑洞与星体引力
最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。
总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。
7.恒态宇宙
也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。
8.浩瀚宇宙
假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。
从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。
二、浅谈光的衍射
通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。
现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第 3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个引力子,但也可能吸收10万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体发出的光。
三、论电子结构与原子光谱现象
1. 电子发光
原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。
有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。
2. 原子核和电子之间的磁力作用
标签:物理学论文
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。