编辑:
2013-11-29
三、对非科尔莫哥洛夫概率理论的评析
如上所述,虽然符合经典概率演算系统的概率逻辑(即帕斯卡概率逻辑)就其本身来说是正确的,但它的效力还不够大,于是人们自然期望对帕斯卡概率逻辑放松限制,这就导致了非科尔莫哥洛夫概率理论的出现。由于非科尔莫哥洛夫概率理论抛弃了科尔莫哥洛夫公理系统的某些部分,许多学者因而放弃了对科尔莫哥洛夫概率演算作出恰当解释的追求。根据哈克的观点,“如果一个系统与另一个系统有着共同的词汇,但却有一个不同的定理/有效推理的集合,那么,这个系统就是对第一个系统的偏离;一种异常逻辑就是一个偏离了经典逻辑的系统”。陈波也认为,“变异逻辑就是由否定或修改经典逻辑的一个或多个假定而导致的系统,它们至少在某些定理上与经典逻辑不一致”。非科尔莫哥洛夫概率理论由于对经典概率演算系统的公设或公理进行了修改或放松了限制,因而是一种异常逻辑。
具体地说,非科尔莫哥洛夫概率理论放松了帕斯卡概率逻辑对概率赋值与概率函数的限制或者否定了经典概率演算系统的某些部分。主要表现在:第一,经典概率演算系统只允许基本概率在[0,1]区间取值,而非科尔莫哥洛夫概率理论使概率的取值范围扩大了,例如,他们认为概率值可以取否定和复数值,或者他们允许概率是无穷的;第二,他们认为经典概率演算的某些部分是不可接受的,因而他们抛弃了科尔莫哥洛夫公理系统的某些部分,比如抛弃西格马子结构、抛弃精确概率、完全抛弃数学概率、抛弃正规化公理和抛弃可数可加性;第三,由于抛弃了科尔莫哥洛夫概率演算的有限可加性,因而经典概率演算系统中的正则性、明确性和有限可加性不再成立。科尔莫哥洛夫概率系统与非科尔莫哥洛夫概率理论的关系类似于经典逻辑与相干逻辑或直觉主义逻辑的关系:因此可推断出,非科尔莫哥洛夫概率理论是帕斯卡概率逻辑的变异。
我们可以通过对沙克尔的潜在惊奇理论和柯恩的归纳支持和归纳概率分级句法理论的分析来说明非科尔莫哥洛夫概率理论是一种异常逻辑。沙克尔首先认识到:对于人文系统中的不确定试验,一般来说不可能事先构造样本空间Ω,于是他提出了第一个非帕斯卡概率理论——潜在惊奇理论来描述非分布式不确定性——即当事人不可能事先构造Ω时所面临的不确定性。潜在惊奇理论是度量x关于某一假说的潜在惊奇值和潜在惊奇值运算规则的理论。因此,它是非帕斯卡概率的主观主义解释。潜在惊奇理论具有一系列不同于帕斯卡概率的特征:(1)非分布式不确定性度量定义在不完全样本空间上;(2)在该样本空间中不存在必然事件;(3)任一属于该样本空间的事件h不发生时,~h并不必然发生,即帕斯卡概率论的互补律在此不成立。由于沙克尔的潜在惊奇理论否定了帕斯卡概率论的互补律,因而这一理论可以被看作是一种异常逻辑。
柯恩在对培根和穆勒的排除归纳法研究的基础上,独立地提出第二个非帕斯卡概率理论——归纳支持和归纳概率分级句法理论。柯恩继承了培根思想中的恰当性方面并且扬弃了卡尔纳普归纳逻辑不恰当的方面,柯恩归纳逻辑的主要特点是强调归纳逻辑与自然科学和社会生活实际的紧密联系,即注重归纳逻辑的恰当性和可应用性。他认为,归纳逻辑的形式系统应与不完全理论系统相协调。因而,他以否定的非互补律取代了否定的互补律;在柯恩的系统中,排中律不成立;关于事实问题的非帕斯卡概率不具有可加性,而只能分等级;考虑到科学实际中假说h不能作为证据,他以特有的合取原理取代了合取乘法原理。显然,所有这些表明了柯恩的归纳逻辑是一种异常逻辑。柯恩系统在法庭证明领域、科学方法论的接受理论领域、科学说明领域、性向领域以及语法理论领域都能应用,因此表明了比经典概率演算系统具有更大的可行性。
总而言之,从某种意义上说,非科尔莫哥洛夫概率理论实际上是帕斯卡概率逻辑的发展,因为非科尔莫哥洛夫概率理论是一些学者在帕斯卡概率的各种解释遇到这样那样困难的情况下提出来的。非科尔莫哥洛夫概率理论与经典概率演算系统之间虽然是竞争的,但它们可以同时存在,因为它们的支持者从他们各自不同的立场出发研究概率逻辑。
否定的概率和复数值概率迪拉克(Dirac)、威格纳(Wigner)以及范曼(Feynman)等物理学家更激进地主张否定的概率。例如,范曼建议说,在一维标尺中粒子的漫射具有一个存在于给定位置和时间的概率,这个概率是由取否定值的一个量值给定的。然而,由于是取决于如何对概率作出解释,人们实际上是想说,这种函数与概率函数有某种相似性,但是当它取否定值时,这种相似性就被没有了。考克斯(Cox)在他的连续时间具有离散状态的随机过程理论中容许概率在复数中取值。缪肯汉姆(MückenhEim)在他的《对扩展概率的回顾》(1986)一书中也持同样的看法。
标签:逻辑学论文
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。