【编者按】:数学论文是科技论文的一种是用来进行数学科学研究和描述研究成果的论说性文章。精品学习网论文网为您提供数学论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。
引言
高等数学课程是高校理工科各个专业中最重要的基础课之一,在培养学生思维能力和处理问题能力等方面是其他任何课程不可替代的。高等数学对学生素质、能力的培养起着举足轻重的作用,对一个学校的人才培养质量也是至关重要的。微积分学是高等数学最基本、最重要的组成部分。而微分学是微积分的重要组成部分,它的基本概念是导数与微分,其中导数反映出函数相对于自变量的变化而变化的快慢程度,而微分则指明当自变量有微小变化时,函数值变化的近似值。在工程问题中,经常会遇到一些复杂的计算公式,如果直接用这些公式计算,那是很费力的,利用微分往往可以把一些复杂的计算公式改用简单的近似公式来代替。所以微分的计算是很重要的,不同专业的学生,对微分计算方法的掌握要求是不一样的。本文主要阐述了微分的两种计算方法以及学生对两种方法的掌握程度的要求。
1 常用的微分方法
我们经常会遇到这样的函数,都可由自变量的解析式 = ()来表示,这种函数称为显函数。根据微分定义,要计算函数 = ()的微分,只需求出它的导数 (),然后再乘以即可。这是计算函数的微分的最常用方法,学生要先扎实的掌握这种计算方法。
例1 设 = ,求。
解法1: =
= · = ··
=
所以 =
例2 设 = , 求。
解: =
= · = =
所以 =
隐函数求导法,就是不管隐函数能否显化,直接在方程 = 0的两端对求导,由此得到隐函数的导数。因此我们根据微分的定义就得到了计算隐函数微分的方法。
例3 已知方程 = ,求。
所以 = -
2 一阶微分形式不变性的微分方法
设函数 = , = (),根据一阶微分形式的不变性,由复合函数的求导法则可得复合函数 = (())的微分为 = = (()) ()。因此,我们又得到了计算微分的一种方法,学生应该掌握第一种微分方法后,再了解或掌握这种方法。
= ··3 =
对于一个隐函数来说,根据一阶微分形式的不变性,我们可以在方程两边同时计算微分,在计算的过程中,要注意是自变量,是关于自变量的函数。
例3 解法2:
3 结束语
在实际问题中,经常会遇到一些复杂的计算公式,如果直接用这些公式计算,那是很费力的,利用微分常常可以把一些复杂的计算公式改用简单的近似公式来代替。因此,微分的计算是很重要的,不同专业的学生,对微分计算方法的掌握要求是不一样的,学生要着重学习第一种方法,再了解或掌握第二种方法
下一篇:关于高等数学中微分概念的探索