【编者按】:数学论文是科技论文的一种是用来进行数学科学研究和描述研究成果的论说性文章。精品学习网论文网为您提供数学论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。
现行的中学数学教学大纲的教学目的中,除规定了具体的数学知识和基本技能外,还规定了“进一步培养学生的思维能力、运算能力、空间想象能力、解决实际问题的能力,以及数学创新意识;进一步培养良好的个性品质和辩证唯物主义观点”。就数学课程来说,数学的具体知识和能力要求可通过教材得以体现,是教学要实现的重点目标,是显性的;而后者不易被具体的数学知识所表示,是隐性的。方明一老师认为隐性目标是指:“学习的兴趣、信心和毅力,科学态度,探索创新精神以及欣赏数学的美学价值。”
实际教学中,笔者认为教学目标通常分为三个层次:一是知识目标,即本课时所要讲授的具体的数学知识,包括定义、定理、公式以及怎样运用这些定义、定理、公式解题。二是能力目标,即本课时的概念教学和解题教学中所涉及的技能技巧,这些技能技巧即为数学能力。三是隐性(素质)目标,如果把大纲中的内容细化,可分为思想方法目标、德育目标、数学人文目标.即以数学知识为载体,以数学思想方法、数学思维品质为突破口去揭示事物的本质属性(可上升到哲学层面),重视数学教育对学生的全面发展所起的作用。
应试教育与素质教育的区别就在于前者只关注显性目标,而后者关注两种目标的统一。数学教学中隐性目标的意义有:一是突出数学思想方法对理解数学知识、解决数学问题的指导作用(具有方法论意义);二是体现数学作为一种文化的特点,把数学中具有文化共性的内容、思想、方法揭示出来,让学生感悟到数学在人类进步中所起的巨大作用。
一、注重数学思想方法的渗透,使学生成为会归纳、抽象和善于类比的人。
数学思想是人们对数学内容的本质认识,是对数学知识和数学方法的进一步抽象和概括,属于对数学规律的理性认识.而数学方法则是解决数学问题的手段,具有一定的可操作性.同一数学成果,当用它去解决别的问题时,就称为方法;当论及它在数学体系中的价值和意义时,则称为思想.要将数学思想和数学方法区分开来是困难的,于是人们把它们统称为数学思想方法。课堂教学中既要重视它的解题功能,也要重视它的文化功能。
如整体思想贯穿于数学教学的全过程,从小学加减法中的加数合并到一起,减数合并到一起到初中的合并同类项、解方程(不等式)的换元法、各种代(变)换等.这种思想折射到电子技术中便有集成电路,折射到管理学中便有1+1>2,通俗地说,“团结就是力量”。这些可看作是数学中整体思想在社会生活中的运用。
数学思想方法的重要作用是让学生学会解数学题,这是目前师生对数学思想方法感兴趣的主要原因。若教师对问题的分析鞭辟入里,学生则觉得这样的解题思路是合情合理的,即使是特殊的解法,也是智慧的结晶,体现了数学思想方法的重要性.不重视数学思想方法的数学教学常被异化为解题“训练”。学生只知其然,不知其所以然.必然会影响学生学习数学的主动性和积极性。
数学教学中不仅要把一些解题规律和程式化的做法归纳提炼成思想方法,还要善于把数学思想类比到日常生活中,在教育上的作用是使学生能数学地思考问题,使数学教育的文化价值得以体现。这要靠老师恰当的点拨与引导,也是学习数学的根本原因。数学思想方法在教学中出现频率高、实用性强,应不失时机地抓住教育机会。
二、注重德育教育的渗透,把学生培养成求真务实的人。
陶行知先生说:“学校教育千教万教,教人求真。”数学学科中德育教育的主要内容有:辩证唯物主义、美育、爱国主义、人格教育.其目的在于运用数学知识,使学生能初步运用辩证唯物主义观点认识世界。通过古今数学成就的介绍培养学生的爱国主义思想、民族自尊心和自信心。通过数学问题的发生和解决过程的教学,培养与锻炼学生知难而进的坚强意志,败而不馁的心理素质,一丝不苟的学习品质,勤于思考的良好学风,勇于探索的创新精神,实事求是的科学态度。数学课中有丰富的素材可用于对学生进行德育教育。
坐标轴的平移是教育学生思想解放的好机会。在此之前学生已习惯于平移图象(曲线),是以坐标轴为参照系,现在要平移坐标轴,岂不“太岁头上动土”?坐标平移不仅是技术问题,更是思想观念问题.不突破平移图象的旧思想的束缚,就不敢想象能提出坐标平移问题.在分析平移前后的位置关系中,学生发现:图象向左(右)移相当于y轴向右(左)移,图象向上(下)移相当x轴向下(上移),它们的相对位置没变.这里的变与不变揭示了事物的运动规律,学生由此可加深对唯物主义辩证法的理解。
由此可教育学生对待传统的做法,当我们感到它在某些方面有些不便时,可以想到用别的办法来试试,如果成功了,就是一种创新。关键是我们要敢于去想、去做、去碰壁、去尝试.我们教学中要留有时间给学生思考、发言,对学生的想法(不管多么幼稚甚或错误),教师都要倾听,并给予鼓励。
对学生意志等品质的培养几乎随处都可进行.当学生解题遇到困难要退却时,教师加以点拨并给予鞭策;当学生有创新的解法或想法时,教师给予褒扬;当学生解题常犯低级错误时,教师给予耐心的指导……这些对学生形成健全的人格都是至关重要的。
三、注重数学教学的文化功能,使学生做一个通晓文理的人。
数学从本质来讲是一种文化,因而数学教学首先是文化的教学。数学文化的基本特征有:数学文化是传播人类思想的一种基本方式,数学语言演变成一种世界语言;数学文化是自然与社会相互联系的一个尺度,许多重大社会问题的论证要用到控制论、数理统计、运筹学等数学知识;数学文化具有相对的稳定性与连续性;数学文化具有高度渗透和无限的发展可能性。这些功能虽然不是每堂课都能得到体现,但我们还是应尽量让学生多感受。
如极限的概念是教学的难点。若用学生熟知的“一尺之棰,日取其半,永世不竭”来引入,再借助于多媒体演示其变化趋势,则能有效地帮助学生理解极限的定义,突破这个难点.若在极限概念给出后,用“孤帆远影碧空尽,唯见长江天际流”来描述,不仅能使学生用更开阔的眼光、更高的观点来理解极限,而且还是一种妙不可言的美学欣赏。这样适度营造文化氛围的教学过程,既有利于学生理解教学内容,又有利于提高学生的文化品位,应是我们孜孜以求的。
数学归纳法可以说是“中西合璧”,是中西方两种思想的集中体现.杨振宁教授认为,中国传统文化里最重要的一点就是要追求一个“理”。用什么方法来追求这个“理”呢?就是归纳法.中国数学更着重实用,要求把问题算出来,即更重视“构造性”数学,而不追求结构的完美与理论的完整;西方文化的一大特点是崇尚理性,将数学和哲学紧密地联系在一起.西方数学强调数学的逻辑结构和整体把握及理性认识,追求严密推理的、理想完美的数学。解某些数学题,用归纳法推(猜)出结论,是中国方法,后面的归纳证明则是西方思想。
下一篇:关于数学探究式授课方案探索