您当前所在位置:

浅谈运用迁移规律搞好两个过渡

2012-09-27

【编者按】:数学论文是科技论文的一种是用来进行数学科学研究和描述研究成果的论说性文章。精品学习网论文网为您提供数学论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。

在数学教学中运用迁移规律搞好旧知识向新知识的过渡、形象思维向抽象逻辑思维过渡,这是提高教学质量的途径之一。教学实践中如何引导学生实现这两个过渡,现将教法体会介绍如下。

一、旧知识向新知识的过渡

数学知识是有系统、互相联系的。在一系列知识之间,往往前面知识是后面知识的基础,后面知识是前面知识的发展,所以,学习后次复习前次,以旧引新是必要的。然而新知识既是发展,就与旧知识有所不同,其间是有坡度的,如何搭好它们之间的桥,则成了教学的关键。

1.如果一个新知识可以看作是由某一个旧知识发展而来的,教学中则要突出演变点。如有余数除法的验算。学习这部分知识,要以前面能整除的除法验算为基矗两类验算都要用“商和除数相乘”,后者演变的是“还要加上余数”。教学时,不但需要复习能整除的验算方法,还要复习有余数的除法,并重点理解。以246÷5为例,商49平均分了246吗?(不是)那么是平均分了多少?(245)验算时只用商、除数能行吗?应该怎么办?引起学生议论。经过讨论可顺利地使学生掌握新的规律和验算方法。

2.一个新知识可以看作是由两个旧知识组合而成的,教学中则要突出连接点。如学习两步计算应用题,讲课前复习一步减法应用题:“商店里有24个皮球,卖出15个还剩多少个?”这是旧知识,我们认为这道题中的商店里有24个皮球这个已知条件,可以用另外的旧知识来代替,则成为两个旧知识的连接点。于是提问:“如果商店里有24个皮球不直接给,可以用两个什么条件?”学生马上就可以答出:“换成商店里有6个白皮球,18个花皮球”或换成“商店里有4盒皮球,每盒6个。”老师给予肯定:这就组成了新的两步计算应用题。既然大家可以变化得到就可以解答出来,于是自然过渡到新知识,这就是在两个旧知识的连接点做文章,形成了容易解答的一个新知识。这样过渡自然,教学效果好。

3.一个新知识可以看作与某些旧知识属同类或相似,教学时要突出共同点。如教学万以内退位减法时,我们认为它是以百以内数的退位减法为基础,后者多了十位不够减、百位不够减怎么办的问题。但无论哪一位不够减,处理方法都一致,即有共同点,就是“哪一位上不够减,要以前一位退1当10和本位上的数加起来再减”,这就抓住了一类知识的共同点,仿旧知识学习新法,再把新法归为旧知识,过渡自然,学生容易理解记忆。

二、形象思维向逻辑思维过渡

教学中学生通过操作和直观演示得到感性认识,在感性认识和形成表象的基础上抽象、概括,继而强化训练、反复实践才能达到教学目的,所以由形象思维到逻辑思维是有过程的。教学时要遵循认识规律,精心设计每一个环节。

1.增加台阶,减缓坡度教学中坚持以操作和直观为主,让学生动脑、动口、动手获得感性认识,并通过大量的感性认识形成表象,而表象又是形成逻辑思维的台阶。如我们教学“平均分”、“谁是谁的几倍”等概念时,设计了四个训练层次。第一层次,让学生按要求摆学具,边摆边说,初步达到感知概念;第二层次让学生看书中图,边看边说,逐步形成表象;第三层次,让学生根据表象画出线段图来表示数关系,进一步向抽象过渡;第四层次,让学生用精练语言叙述数量关系,通过实物、图示等促使学生在脑中形成表象,进一步认识数量关系,达到深刻理解概念的目的。

2.强化操作和直观的目的性,使表象更明显表象是一个整体,它包括若干个方面,而我们用到的则是其中的一、二个方面。教学必须注意抓操作、直观的目的性,以形成重点部位突出的表象,便于抽象概括。如学习一位数乘两位数时,以义务教材五册例4:24×3为例,教学中应防止学生不顾过程拿出3个24根木棒放在一起就算完成任务,而是让学生把3个24根小棒摆成三行,再把10个单根的捆在一起,最后排成一列。在此基础上看书中图,重点分析“为什么把10个单根的用线圈起来,画箭头指向一捆10根的小棒?”为一步列式计算形成了这部分的突出表象将为下步计算,先算个位,满10进一打下了基矗。

3.抽象概括要以表象做根据教学中应防止操作归操作、计算归计算,数形脱节现象发生。抽象概括不离直观,直观形成表象。在动手操作形成表象后,立即组织学生列式计算,由具体到抽象概括,顺利达到教学目的。

精品学习网 数学论文栏目