(一)空间观念
小学生对几何图形的认识都基本属于表象阶段,因此,一般只描述其某些特征而不下定义。为了便于教师掌握其教学要求,新大纲中把它们由低到高分为“直观认识”、“初步认识”、“认识“和“掌握特征”四个层次。
直观认识——看到有关图形、实物或模型,能初步认识其外形,说出名称。
初步认识——较前者略高一些,能略知图形的一、两个简单的特征。
认识(知道)——较“初步认识”又略高一些,知道图形一般特征。
掌握特征——知道图形某些本质特征。这是认识的最高层次,但仍不要求对概念下定义。
新大纲中对大多数的平面及立体图形都分几个层次逐步要求,目的是加强空间观念的培养。例如:
1.直线、线段
一年级要求“初步认识”,即知道把一根长线拉紧,就成为直线;直线中的一段就是线段。四年级在认识射线同时,再进一步认识直线和线段,知道直线没有端点,可以无限延长;线段有两个端点;射线只有一个端点,另一端可以无限延长。
2.角
二年级“初步认识”,要求知道角有两条边和一个顶点,知道哪些实物的哪些部分是角。四年级要求“认识”,知道从一点引出两条射线,组成一个角,知道角的大小,知道角可分成直角、锐角、钝角、平角和周角。
3.长方形和正方形
一年级有直观认识长方形和正方形的内容,但不提要求,不作考核。二年级要初步掌握长、正方形的特征,到三年级已学了计算它们的周长和面积时,则要求进一步掌握它们的特征。
4.平行四边形
二年级要求“直观认识”,由于当时还不认识平行线,不可能知道平行四边形的特征,只要求通过实物直观地知道哪些是平行四边形,哪些不是,如解放军的领章是平行四边形;也可以从摆弄七巧板中,挑出平行四边形。这样,到四年级便要求“掌握特征”,知道两组对边分别平行的四边形就是平行四边形。
5.三角形
三角形是儿童在日常生活中最常见的图形之一。一年级只能“直观认识”,以后不断发展,四年级要求“掌握特征”,知道三角形的稳定性、三角形的分类、三角形的内角和。
6.长方体和正方体
由于小学生在入学前接触过长、正方体的实物,如积木等,为此,一年级只能“直观认识”,从外形能分辨什么样的物体是长方体,什么样的物体是正方体,四年级再要求“掌握特征”。这样逐步形成“体”的观念。
7.圆和圆柱
圆和圆柱在孩子们日常生活中也容易见到,但长期以来到高年级才认识,低于学生现有的认识水平。现改为一年级先“直观认识”,如认识圆盘面是圆形、罐头筒是圆柱体;到五年级再正式“认识”,知道圆心、半径和直径,知道同一圆内的半径、直径都相等;知道圆柱体上下两底面是相等的圆形,侧面展开是长方形。但这种认识都没有或没有真正地揭示其本质特征。
8.球
球体的认识是新大纲所增加的内容。分为两个阶段:一年级直观认识球,与直观认识圆同时进行,以便从外形上使儿童能开始体会一个是面,一个是体。到五年级则直观认识球的半径和直径,其目的也为以后学习打下一个最起码的基础。这部分作选学内容。
此外,还有一些图形是只在一个年级内集中一次编排,如四年级要求初步认识垂线和平行线,掌握梯形的特征;五年级要求认识圆锥。
(二)求积计算
几何求积是几何初步知识教学的重要内容之一,也有利于数形结合,发挥其相互为用的功能。新大纲对这部分的教学要求是:
1.必须在建立相应的空间观念基础上进行几何量的计算。例如,首先要求知道周长、面积、体积的含义,认识相应的计量单位(长度、面积、体积),有的还要建立相应的观念,如初步建立1平方米、1平方分米、1平方厘米的面积观念,才能开始求积计算。
2.求积计算分两个层次:一是“会计算”,二是“掌握……计算公式”。显然,后者要求较高,而前者一般可不出现公式,学生根据图形的特征便可直接推知计算方法。
属于第一层次的有:会计算长、正方形的周长,长方体和正方体的表面积、圆柱的表面积和圆柱、圆锥的体积。
下一篇:浅论小学数学教学中的设问