【编者按】:数学论文是科技论文的一种是用来进行数学科学研究和描述研究成果的论说性文章。精品学习网论文网为您提供数学论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。
摘要:在现代的数学教育中,数学思想方法的教学已是数学教学的主要任务,中学数学教材中蕴涵着许多重要的数学思想方法,其中化归思想方法是最基本也是最重要的数学方法之一,化归思想是解决数学问题的指导思想和一种基本策略。所以化归思想的教学是数学教学的重要内容。那么什么是化归思想方法呢?运用化归思想方法要遵循那些问题?它的主要化归方法有哪些?以及其在中学数学中有那些运用呢?
关键词:化归思想方法 规范问题 基本原则 映射反演法 数形结合
Abstract :In the modern mathematics education, mathematics thinking method teaching already was the mathematics teaching primary mission, in the middle school mathematics teaching material is containing many important mathematics thinking method, in which reduction thinking method is most basic also is one of most important mathematics methods, the reduction thought was solves mathematics question guiding ideology and one kind of basic strategy.Therefore the reduction thought teaching is the mathematics teaching important content.Then what is the reduction thinking method? Must follow these questions using the reduction thinking method? Which does its main reduction method have? As well as it has these utilization in the middle school mathematics?
Key word :Reduction thinking method Standard question Basic principle Mapping method of inversion The number shape unifies
当今社会不断地在进步,社会的进步与发展是依赖科技的发达与经济的提高,而现代科技与经济发展成熟的标志是数学化,这是指在科技与经济中需要某些具体的数学知识,但更依赖数学思想与数学方法的运用,所以在数学教学中,加强数学思想方法的教学已成为数学教学的重要内容。
近几年随着素质教育的不断深入,就开始认识到数学教育应从偏向重视知识教学向重视数学思想方法教学和能力培养转变。要实行数学教育的现代化,那就要进行数学的现代教学,把经过千百年锤炼的数学精华的教育建立的数学的思想教育基础之上,并使用现代数学方法和语言。加强数学教育是当今数学教育现代化的关键。
数学思想方法有很多,其中化归思想是最基本的数学思想,并且化归思想是数学思想的两大“主梁”之一 。要加强对化归思想的教学也是加强数学思想方法教学的重要内容。
笛卡儿认为,任何问题都可以化归为数学问题,这里的“化”就是“化归”,善于使用化归是数学思维方式中的一个重要特点,而化归方法是数学方法中常用的一种方法。
化归思想是非常重要的数学思想方法,是解决一些数学问题的重要方法,对于一些数学问题,我们不能直接对问题展开攻击,而是对问题进行变法、转化,直至把它化归一些已解决问题,或容易解决的问题。
匈牙利著名的数学家P?罗莎的名著《无穷的记忆》中曾用以下的比喻十分生动地说明了化归思想的实质。她写道:“假设在你面前煤气灶,水龙头,水壶和火柴,现在的任务是烧水,你应该怎样做?”正确的回答是“在水壶中放上水,再点燃煤气,再把水放到煤气灶上。”接着罗莎又提出第二个问题:“假设所有的条件都不变,只是水壶已有了水,这时你应该怎么做?”对此,人们往往回答说:“点燃煤气,在把水放到煤气灶上。”但罗莎却认为这不是最好的回答,因为“只有物理学家才会这样做,而数学家会倒掉壶中的水,并且声称我已把后一问题化归到先前的问题了,而先前的问题我已回答。” 。“把水倒掉”——这是多么简洁的回答呀!比喻有点夸张,但它的确形象地说出了这种问题解决的方法就是化归方法。
所谓的“化归”,从字面上看可以理解为转化和归结的意思,数学方法论所论及“化归”方法,是指数学家们把待解决或未解决的问题,通过某种转化过程,归结到一类已解决或者比较容易解决的问题中去,最终求得原问题解答的一种手段和方法 。
以上的解释我们可以初步理解为,化归方法就是要通过某种手段将一个问题转化到另一问题,但要使转化后问题更容易解决。下面就举一个例子来理解一下化归思想方法:
2 解不等式log
分析:当我初看此题时,我们不知道怎么着手解决,思考一下想这类不等式的问题,我们能不能转化为一般不等式的方法呢?通过分析将解这个不等式转化到解以下一般形式的不等式:
(1)
(2)
解(1),(2)可得不等式的解为(-1,0) (3,+ )。
通过以上例1的解决,我们熟悉了一下化归方法,可以得出化归思想方法的一般思维过程如图1所示:
新问题 问题
解答 解答问题
这也是说理想的化归方法。是通过数学内部联系和矛盾运动,在推移转化中实现问题的转化,也就是把有待解决的问题转化为规范问题,从而使问题得到解决 。化归的方法有多种多样,但是它要将新的问题变得简单,熟悉,容易。这样才有利与新的问题更好得到地解决。盲目随心所欲的化归,可能使新的问题更复杂,更难以解决。化归的目的就是要实现问题的规范化。所以使用化归方法的时候也要遵循一定的原则,使问题规范化。下面就结合具体的例子来谈一下使用化归方法遵循的原则。
1.在解决数学问题时,经常会遇到一些我们无从下手的题目,我们可以通过化归将有待解决的问题转化到比较有利与我们运用的熟悉的知识和问题来解决。
相关推荐链接: