您当前所在位置:

谈一下高中数学应用问题的教学

2013-04-12

为了使学生亲自体验数学知识的应用,灵活运用数学知识解决实际问题,加强学生学习的自主活动性,培养综合运用知识的能力。新教材安排了三次实习作业,一是 “函数关系的实习作业”,让学生调查研究附近商店、工厂、学校潜在的函数问题;二是利用“平面向量”知识解决不能直接测量的距离、方向问题。三是“线性规划的实际应用”。

研究性课题是培养学生应用意识和创新能力的重要内容,新教材分别在第三、五、七、九章中安排了四个研究性课题:“分期付款中的有关计算

”、“向量在物理学中的应用”、“线性规划的实际应用”、“多面体欧拉定理的发现”,让学生动手操作,选择优化方案、归纳概括,恰当建模,运用理论指导实践。

二、高中数学应用题问题的教学实践

高中学生年龄一般在 15 — 17 周岁,他们认识过程的各种心理成份虽已接近成人的水平,但智力活动带有明显的随意性,其抽象思维从“经验型”向“理论型”急剧转化。能够逐步的摆脱具体形象和直接经验的限制,借助于概念进行合乎逻辑的抽象思维活动,开始在教师帮助下独立地搜集事实材料,进行分析综合,抽象概括事物的本质属性。因此,应结合学生的心理特点和思维规律,进行应用问题的教学。

1 、重视基本方法和基本解题思想的渗透与训练

为培养学生的应用意识,提高学生分析问题解决问题的能力,教学中首先应结合具体问题,教给学生解答应用题的基本方法、步骤和建模过程,建模思想。

教学应用题的常规思路是:将实际问题抽象、概括、转化 -- à 数学问题 à 解决数学问题 à 回答实际问题。具体可按以下程序进行:

( 1 )审题:由于数学应用的广泛性及实际问题非数学情景的多样性,往往需要在陌生的情景中去理解、分析给出的问题,舍弃与数学无关的因素,抽象转化成数学问题,分清条件和结论,理顺数量关系。为此,引导学生从粗读到细研,冷静、慎密的阅读题目,明确问题中所含的量及相关量的数学关系。对学生生疏情景、名词、概念作必要的解释和提示,以帮助学生将实际问题数学化。

( 2 )建模:明白题意后,再进一步引导学生分析题目中各量的特点,哪些是已知的,哪些是未知的。是否可用字母或字母的代数式表示,它们之间存在着怎样的联系?将文字语言转化成数学语言或图形语言,找到与此相联系的数学知识,建成数学模型。

( 3 )求解数学问题,得出数学结论

( 4 )还原:将得到的结论,根据实际意义适当增删,还原为实际问题。

例:某城市现有人口总数 100 万人,如果年自然增长率为 1.2 %,写出该城市人口总数 y( 人 ) 与年份 x( 年 ) 的函数关系式

这是一道人口增长率问题,教学时为帮助学生审题,我在指导学生阅读题时,提出以下要求:

——粗读,题目中涉及到哪些关键语句,哪些有用信息?解释“年自然增长率”的词义,指出:城市现有人口、年份、增长率,城市变化后的人口数等关键量。

——细想,问题中各量哪些是已知的,那些是未知的,存在怎样的关系?

——建模,启发学生分析这道题与学过的、见过的哪些问题有联系,它们是如何解决的?对此有何帮助?

学生讨论后,从特殊的 1 年、 2 年…抽象归纳,寻找规律,探讨 x 年的城市总人口问题: y=100(1+1.2%) x .