精品学习网
所在位置:主页 > 机器人 > 储能电站监控测试软件设计与实现(电化学储能电站监控系统)

储能电站监控测试软件设计与实现(电化学储能电站监控系统)

发布时间:2022-11-04 12:00来源:www.51edu.com作者:畅畅

电化学储能电站监控系统

现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。

各种储能系统优缺点对比

1、机械储能

机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。

(1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。

不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。

(2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞穴,当系统发电量不足时,将压缩空气经换热器与油或天然气混合燃烧,导入燃气轮机作功发电。国外研究较多,技术成熟,我国开始稍晚,好像卢强院士对这方面研究比较多,什么冷电联产之类的。

压缩空气储也有调峰功能,适合用于大规模风场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转换成电的环节,从而提高效率。

不足之处:一大缺陷在于效率较低。原因在于空气受到压缩时温度会升高,空气释放膨胀的过程中温度会降低。在压缩空气过程中一部分能量以热能的形式散失,在膨胀之前就必须要重新加热。通常以天然气作为加热空气的热源,这就导致蓄能效率降低。还有可以想到的不足就是需要大型储气装置、一定的地质条件和依赖燃烧化石燃料。

(3)飞轮储能:是利用高速旋转的飞轮将能量以动能的形式储存起来。需要能量时,飞轮减速运行,将存储的能量释放出来。飞轮储能其中的单项技术国内基本都有了(但和国外差距在10年以上),难点在于根据不同的用途开发不同功能的新产品,因此飞轮储能电源是一种高技术产品但原始创新性并不足,这使得它较难获得国家的科研经费支持。

不足之处:能量密度不够高、自放电率高,如停止充电,能量在几到几十个小时内就会自行耗尽。只适合于一些细分市场,比如高品质不间断电源等。

2、电气储能

(1)超级电容器储能:用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量。与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程。充电时间短、使用寿命长、温度特性好、节约能源和绿色环保。超级电容没有太复杂的东西,就是电容充电,其余就是材料的问题,目前研究的方向是能否做到面积很小,电容更大。超级电容器的发展还是很快的,目前石墨烯材料为基础的新型超级电容器,非常火。

Tesla首席执行官ElonMusk早在2011年就表示,传统电动汽车的电池已经过时,未来以超级电容器为动力系统的新型汽车将取而代之。

不足之处:和电池相比,其能量密度导致同等重量下储能量相对较低,直接导致的就是续航能力差,依赖于新材料的诞生,比如石墨烯。

(2)超导储能(SMES):利用超导体的电阻为零特性制成的储存电能的装置。超导储能系统大致包括超导线圈、低温系统、功率调节系统和监控系统4大部分。超导材料技术开发是超导储能技术的重中之重。超导材料大致可分为低温超导材料、高温超导材料和室温超导材料。

不足之处:超导储能的成本很高(材料和低温制冷系统),使得它的应用受到很大限制。可靠性和经济性的制约,商业化应用还比较远。

3、电化学储能

(1)铅酸电池:是一种电极主要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。目前在世界上应用广泛,循环寿命可达1000次左右,效率能达到80%-90%,性价比高,常用于电力系统的事故电源或备用电源。

不足之处:如果深度、快速大功率放电时,可用容量会下降。其特点是能量密度低,寿命短。铅酸电池今年通过将具有超级活性的炭材料添加到铅酸电池的负极板上,将其循环寿命提高很多。

(2)锂离子电池:是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。主要应用于便携式的移动设备中,其效率可达95%以上,放电时间可达数小时,循环次数可达5000次或更多,响应快速,是电池中能量最高的实用性电池,目前来说用的最多。近年来技术也在不断进行升级,正负极材料也有多种应用。

市场上主流的动力锂电池分为三大类:钴酸锂电池、锰酸锂电池和磷酸铁锂电池。前者能量密度高,但是安全性稍差,后者相反,国内电动汽车比如比亚迪,目前大多采用磷酸铁锂电池。但是好像老外都在玩三元锂电池和磷酸铁锂电池?

锂硫电池也很火,是以硫元素作为正极、金属锂作为负极的一种电池,其理论比能量密度可达2600wh/kg,实际能量密度可达450wh/kg。但如何大幅提高该电池的充放电循环寿命、使用安全性也是很大的问题。

不足之处:存在价格高(4元/wh)、过充导致发热、燃烧等安全性问题,需要进行充电保护。

(3)钠硫电池:是一种以金属钠为负极、硫为正极、陶瓷管为电解质隔膜的二次电池。循环周期可达到4500次,放电时间6-7小时,周期往返效率75%,能量密度高,响应时间快。目前在日本、德国、法国、美国等地已建有200多处此类储能电站,主要用于负荷调平,移峰和改善电能质量。

不足之处:因为使用液态钠,运行于高温下,容易燃烧。而且万一电网没电了,还需要柴油发电机帮助维持高温,或者帮助满足电池降温的条件。

(4)液流电池:利用正负极电解液分开,各自循环的一种高性能蓄电池。电池的功率和能量是不相关的,储存的能量取决于储存罐的大小,因而可以储存长达数小时至数天的能量,容量可达MW级。这个电池有多个体系,如铁铬体系,锌溴体系、多硫化钠溴体系以及全钒体系,其中钒电池最火吧。

不足之处:电池体积太大;电池对环境温度要求太高;价格贵(这个可能是短期现象吧);系统复杂(又是泵又是管路什么的,这不像锂电等非液流电池那么简单)。

电池储能都存在或多或少的环保问题。

4、热储能

热储能:热储能系统中,热能被储存在隔热容器的媒介中,需要的时候转化回电能,也可直接利用而不再转化回电能。热储能又分为显热储能和潜热储能。热储能储存的热量可以很大,所以可利用在可再生能源发电上。

不足之处:热储能要各种高温化学热工质,用用场合比较受限。

5、化学类储能

化学类储能:利用氢或合成天然气作为二次能源的载体,利用多余的电制氢,可以直接用氢作为能量的载体,也可以将其与二氧化碳反应成为合成天然气(甲烷),氢或者合成天然气除了可用于发电外,还有其他利用方式如交通等。德国热衷于推动此技术,并有示范项目投入运行。

不足之处:全周期效率较低,制氢效率仅40%,合成天然气的效率不到35%。

电化学储能设备

好就业,就业前景比较好,就业去向如下:

就业行业包括教育、材料、军工、汽车、军队、电子、信息、环保、市政、建筑、建材、消防、化工、机械等行业。

部门包括:各级质量监督与检测部门、科研院所、设计院所、教学单位、生产企业、省级以上的消防总队等。

该专业毕业生适宜到石油化工、环保、商品检验、卫生防疫、海关、医药、精细化工厂等生产、技术、行政部门和厂矿企业从事应用研究、科技开发、生产技术和管理工作;也适宜到科研部门和学校从事科学研究和教学工作。

电化学储能电站调度运行管理

前景不错,从全球发展趋势来看,电池储能已经是发展可再生能源离不开的支撑技术。但在整个储能系统中,锂电池极易起火复燃,通过传统的隔绝氧气、切断燃烧链的方法,很难扑灭的火灾。因此电化学储能电站需要配置专业有效的消防设施,以最大限度降低风险。

目前,储能电站的消防系统主要分为水消防系统、气体消防系统、泡沫灭火系统三种。

电储能设备

蓄能器是将压力液体的液压能转换为势能贮存起来,当系统需要时再由势能转化为液压能而做功的容器。

因此,蓄能器可以作为辅助的或者应急的动力源,可以补充系统的泄漏,稳定系统的工作压力,以及吸收泵的脉动和回路上的液压冲击等。根据以上特点,在液压系统中采用蓄能器作为辅助油源向用户提供液压最合适。

储能电站控制系统

可研性报告审批-立项等前期工作,具体到建设阶段是:选址.勘测.设计.确定方案.设备采购.开工后先土建部分,电缆沟挖掘,变压器地基开挖.储能电站集装箱地基开挖,设备到货后电气设备安装,高压开关安装,箱变安装,电缆敷设,集装箱安装.下一步,低压电送电,开关变压器电缆试验及二次部分试验,消防调试,控制系统调试等.紧接着就是高压电接线送电,进入储能电池单体调试,联调,下一步,联系电力公司调度进行联调联试,试运行,进行性能测试,满足要求通过测试后取得许可进入商业运行.

储能电站设备

变电站:改变电压的场所。为了把发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低,这种升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。储能电站——通常指的是较大的风力发电,或是光伏发电储能转换电站。

电化学储能电站安全

随着储能技术的降本和普及,储能已经成为新能源的重要辅助工具,光伏+储能将成为未来光伏利用的一种重要形式。光伏人学一点储能,不只是为了拓展视野和知识,更是未来将光伏发挥最大作用的重要既能。

1. 储能技术

储能技术主要分为物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如铅酸电池、氧化还原液流电池、钠硫电池、锂离子电池)和电磁储能(如超导电磁储能、超级电容器储能等)三大类。

根据各种储能技术的特点,飞轮储能、超导电磁储能和超级电容器储能适合于需要提供短时较大的脉冲功率场合,如应对电压暂降和瞬时停电、提高用户的用电质量,抑制电力系统低频振荡、提高系统稳定性等;而抽水储能、压缩空气储能和电化学电池储能适合于系统调峰、大型应急电源、可再生能源并入等大规模、大容量的应用场合。

储能效率是指储能元件储存起来的电量与输入能量的比。蓄电池储能效率关系到蓄电池的寿命和成本,要提高蓄电池储能效率就要了解储能效率都受哪些因素的影响,除了蓄电池自身构造会影响其储能效率,如元件材质、制造工艺、电解液配置等,蓄电池储能效率也与充电状态、充放电电流、充电电压、环境温度等一些外部因素有很大关系。

2. 蓄电池储能效率测试系统的设计

蓄电池储能效率测试系统的基本原理见图,系统的主要元件有:单相智能电表、充电器、逆变器、单片机、负载等。

图1蓄电池储能效率测试系统的基本原理

工作过程可以简要的描述为:

充电开始时,电表接在交流电源和蓄电池的充电模块之间,通过电表可以直接读出蓄电池充电完成消耗的电能,这部分电能包括两部分:充电器以及各种开关器件损耗的电能、蓄电池内阻耗能和储存的电能。

当充电完成时,由充电模块向控制模块发出充电完成信号(持续高电平),控制模块此时将电表数据送至单片机,由单片机将数据记录并显示出来。然后控制模块向充电模块发出指令使充电电路停止工作,并向逆变模块发出指令使逆变电路工作,向负载供电。此时将电表接在逆变器与负载之间,通过电表可以直接读出负载从蓄电池获取的电能,由于电表只能检测220V交流电,所以从电表获取的电能实际上包含了逆变器消耗电能和负载消耗的电能。

当放电完成时,由逆变模块向控制模块发出放电终止信号,控制模块此时将电表发送过来的电量数据送至单片机,由单片机将数据记录并显示出来。然后控制模块向逆变模块发出指令使逆变电路停止工作,并断开负载。考虑到蓄电池充电和放电的不同步,单相电度表即可作为充电电能计量也可用作放电电能计量。若是要再次检测,重复以上的操作。

3. 蓄电池储能效率影响因素

蓄电池储能效率关系到蓄电池的寿命和成本,要提高蓄电池储能效率就要了解储能效率都受哪些因素的影响,除了蓄电池自身构造会影响其储能效率,如元件材质、制造工艺、电解液配置等,蓄电池储能效率也与充电状态、充放电电流、充电电压、环境温度等一些外部因素有很大关系。

- 充电状态的影响

充电状态是指蓄电池在充电时达到的状态,简而言之满充时的充电状态为100%。根据国家的相关规定,在充电状态不同时对蓄电池的储能效率有不同的标准,在充电状态小于50%时,要求蓄电池储能效率大于95%;充电状态在75%的时候,要求蓄电池储能效率大于90%;充电状态在90%时,要求蓄电池储能效率大于85%。

- 充放电电流的影响

由蓄电池特性可知,在对蓄电池进行放电时,大电流放电蓄电池实际释放的能量小于小电流放电时蓄电池释放的能量,这说明蓄电池的储能效率与放电率有很大的关系。

通过图2 能够看出蓄电池的库伦效率在电流变大时也不断增加,这是由于当大电流充放电时,会缩短蓄电池的充放电时间,所以蓄电池由于自放电而损失的能量就比较小。而充电效率和放电效率,在电流比较小的时候,两者都会随着电流的增大不断的增大,当超过某一时刻后,两者就会随着电流的增大而减小,这是因为电流过大时电池内部的极化现象就会加剧,蓄电池的功率损耗就会变大,进而使得能量损耗的增加,所以导致蓄电池的效率下降。所以在选择充放电电流的时候不能盲目选择,电流过大或者过小都会降低蓄电池的效率,要根据实际的情况对蓄电池充放电电流进行选择。

- 充电电压的影响

充电效率实际也就是把硫酸铅转变成二氧化铅和铅活性物质的时消耗的电量和充电过程中输入到蓄电池电量的比值,在此假设蓄电池没有自放电,那么蓄电池的储能效率就等于充电效率乘以放电效率。

而在充电过程中消耗的电能主要由于蓄电池内析气和腐蚀等一些副反应。阀控式铅酸蓄电池的充电效率较高,充电效率和荷电状态有很大关系,一直到蓄电池满电荷之前蓄电池的充电效率都会很高,在接近完全充满电的时候由于产生过充电反应,所以充电效率就会降低。以单体蓄电池为例,其额定电压一般为2.0V,如图3给出了在恒压充电方式下充电电压和储能效率的关系曲线,可以看出,在电压较小的时候随着充电电压的升高储能效率会增加,当超过一定值时由于副反应的发生,储能效率会下降。

- 环境温度的影响

将蓄电池的充电方式设置为恒压限流,在环境温度小于10℃时,会对蓄电池内的电流扩散造成影响使其降低,但是对交换电流的密度影响不大,所以加剧了蓄电池内部浓度差的极化,导致了储能效率的减小。低温条件下,对于放电过程中产生的,充电时其溶解的速度会降到很小,而且上的空隙不能够使电解液保持饱和度最小,对充电的化学反应有一定的阻碍力,最终导致的结果就会使储能效率下降。

4. 飞轮储能

近年来,飞轮储能技术取得突破性进展是基于下述三项技术的飞速发展:一是高能永磁及高温超导技术的出现;二是高强纤维复合材料的问世;三是电力电子技术的飞速发展。利用超导,我们可以把具有一定质量的飞轮放在永磁体上边,飞轮兼作电机转子。当给电机充电时,飞轮增速储能,变电能为机械能;飞轮降速时放能,变机械能为电能。储能飞轮装置示例:超导体是由钡钇铜合金制成,并用液氮冷却至77K,飞轮腔抽至10-8托的真空度(托为真空度单位,1Torr(托)=133.332Pa),这种飞轮能耗极小,每天仅耗掉储能的2%。

1994年,美国阿贡(ANL)国家实验室用碳纤维试制一个储能飞轮:直径38厘米,质量为 11千克,采用超导磁悬浮,飞轮线速度达1000米/秒。它储存的能量可将10个100瓦灯泡点燃2~5小时。该实验室正在开发储能为50千瓦小时的储能轮,最终目标是使其储能达5000千瓦小时的储能飞轮。一个发电功率为100万千瓦的电厂,约需这样的储能轮200个。

1992年美国飞轮系统公司(AFS)开发了一种用于汽车上的机-电电池(EMB),每个“电池”长18厘米,直径23厘米,质量为23千克。电池的核心是一个以20万转/分旋转的碳纤飞轮,每个电池储能为1千瓦小时,它们将12个“电池”放在IMPACT轿车上,能使该车以100千米/小时的速度行驶480千米。机-电电池共重273千克,若采用铅酸电池,则共重396千克。机-电电池所储的能量为铅酸电池的2.5倍,使用寿命是铅酸电池的8 倍,且它的“比功率”(即爆发力)极高,是铅酸电池的25倍,是汽油发动机的10倍,它可将该车在8秒钟内由静止加速至100千米/小时。

5. 抽水储能

抽水储能电站储存能量的释放时间从几小时到几天,综合效率在70~85%之间。

水轮机的效率:转轮技术模型最高有95%,80-90年代的水轮机模型效率最高只有90%。中、小型水轮机的效率可能只有75~80%左右。大型水泵的效率大约在85~90%之间。

再考虑发电机效率98%左右。看起来抽水储能的效率也就是70~80%左右。

6. 超导储能

超导储能系统(SMES)利用超导体制成的线圈储存磁场能量,功率输送时无需能源形式的转换,具有响应速度快(ms 级),转换效率高(≥96%)、比容量(1-10 Wh/kg)/比功率(104-105kW/kg)大等优点,可以实现与电力系统的实时大容量能量交换和功率补偿。

SMES 可以充分满足输配电网电压支撑、功率补偿、频率调节、提高系统稳定性和功率输送能力的要求。

7. 氢储能

氢储能在电力供过于求的时候采用电解水的方式获得氢,然后低温液态存储起来,在需要的时候通过燃烧产生能量,氢也是燃料电池的主要燃料之一。氢能的生产成本是汽油的4~6倍,其运输、存储、转化过程的成本也都较化石能源高。有人提出利用太阳能,风能和水能发电电解水,真正实现新能源产生新能源,并达到储存能量效果,真正实现“清洁能源的可持续利用”。

电化学储能电站监控系统技术规范

储能电池由电池、电器元件、机械支撑、加热和冷却系统(热管理系统)、双向储能变流器(PCS)、能源管理系统(EMS)以及电池管理系统(BMS)共同组成。

便携式储能电池是指通过物理或化学等方法实现对电能的储存,并在需要时进行释放的一系列相关技术。一般而言,根据储存能量的方式不同可将其分类为机械储能、电磁储能及电化学储能。

电化学储能电站监控系统与电池管理系统通信协议

通过电化学电池或电磁能量存储介质进行可循环电能存储、转换及释放的设备系统。[1]

主要功能:调节峰谷用电问题

主要存储手段:1,抽水储能电站;2,超大型电池组

中文名

储能电站

主要功能

调节峰谷用电问题

主要存储手段

抽水储能电站、储能电池抽水储能电站安装有抽水—发电两用机组,又能抽水,又能发电。在白天和前半夜,水库放水,高水位的水通过两用机组,此时两用机组作为发电机,将高水位的水的机械能转化为电能,向电网输送。解决用电高峰时电力不足;到后半夜,电网处于用电低谷,电网中不能储存电能,这时将两用机组作为抽水机(两用机组可作反向旋转),利用电网中多余的电能,将低水位的水抽向高水位,并注入高水位的水库中,这样,在用电低谷时把电网中多余的电能转化为水的机械能储存在水库中。到用电高峰,水库放水,又将水的机械能,通过发电机转化为电能,向电网输送。水库中的水多次使用,与两机组一起,完成能量的多次转化。高水位水库储存了大量低水位的水,相当于储存电网中多余的电能,解决了电能不能储存的问题。由于用电高峰和低谷的电价不同,高峰电价高,低谷电价低,这样使抽水蓄电站的经济效益也大大提高了。

作用

调峰作用

储电站能源系统

        三峡水电站每年可以产出上千亿的电供我国很多城市使用。

        三峡大坝修建储电站。这个储电站可不像我们平时用的充电宝那般方便,储存大功率的话需要大量的人力和财力。平时会将三峡上游的水储存起来,等到用电高峰期的时候,在把水放出去,增加供电。但是存水并不是一开始就存着,而是电力过剩的情况下,用超大功率机器将水送到上游去,等到用电的时候再放水。

        其实像三峡大坝这样发电量高的,也会产生能源浪费的问题,因为水力发电不容易储存,国家就只能制定一些政策来减少浪费。

储能电站安全管控

TUV我们制订了两个标准,一个是对户用储能系统的标准,是PPP59034,还有PPP59044 第四,集装箱的风险要求 对于PPP59044我们对集装箱储能系统技术进行管控。第二块重点就是电池系统的锂离子电池的要求,还有运输安全的要求,功能安全的要求,功能安全这块也是特别重要,因为你的过充、过温、过流的保护都是由功能安全的评估来决定的。EMC就是电池在电池干扰的环境下面他是否能够正常工作。

  • 热门资讯
  • 最新资讯
  • 手游排行榜
  • 手游新品榜