精品学习网
所在位置:主页 > 半导体照明 > 光伏电站发电效率(光伏电站发电效率递减)

光伏电站发电效率(光伏电站发电效率递减)

发布时间:2022-11-08 12:00来源:www.51edu.com作者:畅畅

光伏电站发电效率递减

在一定时间内,其他条件不变的情况下,当开始增加消费量时,边际效用会增加,即总效用增加幅度大,但累积到相当消费量后,随消费量增加而边际效用会逐渐减少;若边际效用仍为正,表示总效用持续增加,但增加幅度逐渐平缓;消费量累积到饱和,边际效用递减至0时,表示总效用不会再累积增加,此时总效用达到最大;若边际效用减为负,表示总效用亦会逐渐减少。边际收益递减规律体现的是生产要素与收益之间的反向关系。

光伏电站衰减

光伏发电每年的衰减是0.5——0.8%。

20年衰减约20%。单晶组件衰减要约少于多晶组件。非晶光做组件的衰减约低于晶硅。

提升转化率、降低每瓦成本仍将是光伏未来发展的两大主题。无论是哪种方式,大规模应用如果能够将转化率提升到30%,成本在每千瓦五千元以下(和水电相平),那么人类将在核聚变发电研究成功之前得到最为广泛、最清洁、最廉价的几乎无限的可靠新能源

光伏发电量逐年递减吗

那么影响光伏电站发电量因素:

1、太阳辐射量:太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如PV-SYS、RETScreen得到。

2、太阳能电池组件的倾斜角度: 从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下:

A、纬度0°~25°,倾斜角等于纬度

B、纬度26°~40°,倾角等于纬度加5°~10°

C、纬度41°~55°,倾角等于纬度加10°~15°

3、太阳能电池组件转化效率

4、系统损失:和所有产品一样,电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。

5、组合损失: 凡是串联就会由于组件的电流差异造成电流损失;并联就会由于组件的电压差异造成电压损失;而组合损失可达到8%以上,中国工程建设标准化协会标准规定小于10%。

提醒: 因此为了减低组合损失,应注意:

1)应该在电站安装前严格挑选电流一致的组件串联。

2)组件的衰减特性尽可能一致。

光伏电站发电效率递减规律

边际效用递减规律是经济学中的反映供给与需求之间效应关系的规律。

在一定时间内,在其他商品的消费数量保持不变的条件下,随着消费者对某种商品消费量的增加,

消费者从该商品连续增加的每一消费单位中所得到的效用增量即边际效用是递减的。

而金钱边际效用递减规律是指当我们没有钱的时候,钱对我们的刺激作用非常,人们通过赚钱来满足需求,但当我们拥有了足够多的钱的时候,金钱的刺激效应更小了。特别是世界上的那些亿万级别的富豪们,金钱对他们只是一串数字,他们会把钱回馈社会,做慈善等。

光伏电站发电效率递减方法

边际收益递减规律体现的是生产要素与收益之间的反向关系。

在一定时间内,其他条件不变的情况下,当开始增加消费量时,边际效用会增加,即总效用增加幅度大,但累积到相当消费量后,随消费量增加而边际效用会逐渐减少;若边际效用仍为正,表示总效用持续增加,但增加幅度逐渐平缓;消费量累积到饱和,边际效用递减至0时,表示总效用不会再累积增加,此时总效用达到最大;若边际效用减为负,表示总效用亦会逐渐减少。

光伏电站的效率

一、光电效率的定义

在照射强度1000M/cm2:太阳能工作温度25℃±2℃的情况下,最大输出功率除以日照强度乘以太阳能电池板吸收光面积乘以100%。

二、效率的计算方法

理论上,尺寸、标称功率相同的组件,效率肯定是相同的。光伏组件是由电池片组成,一块光伏组件通常由60片(6×10)或72片(6×10)电池片组成,面积分别为1.638 m2(0.992m×1.652m)和3.895 m2(0.992m×1.956m)。

分布式光伏电站发电效率提升办法研究论文

有多种方法:1、马青公式

π=16arctan1/5-4arctan1/239

这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以,可以很容易地在计算机上编程实现。

2、拉马努金公式

1914年,印度数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

3、高斯-勒让德公式:

这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。

4、波尔文四次迭代式:

这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表,它四次收敛于圆周率。

5、bailey-borwein-plouffe算法

这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。1997年,白劳德找到了一个比BBP快40%的公式:

光伏发电效率提高

光伏发电组件发电效率是不变的,光线强光照时间长,发电就多。

光伏电站综合转换效率

不确定,1000平方光伏可以发多少电要看是多长时间,是一天还是一年或者更长的时间,时间越长发电的度数越多。即使是时间相同还要看在什么季节,在夏天光照强度最强且光照时间也最长 ,因此发电的度数越多。

另外还要看天气的好坏,晴朗天气多发电的度数就多,如果阴雨天气多发电的度数就少。因为光伏发电是依靠光伏板吸收太阳能发电的。

另外还要看光伏板按照在哪个地方,比如相同面积的光伏板安装在海南省与安装漠河,它们在相同的时间内和相同的季节因光照时间不一样,其发电量也不一样。故1000平方光伏发电多少是不确定的。

光伏发电效率衰减

一、光伏组件光电转换效率

(一)光电转换效率定义

光伏组件光电转换效率是指标准测试条件下(AM1.5、组件温度25℃,辐照度1000W/m2)光伏组件最大输出功率与照射在该组件上的太阳光功率的比值。

(二)光电转换效率的确定

光伏组件光电转换效率由通过国家资质认定(CMA)的第三方检测实验室,按照GB/T 6495.1标准规定的方法测试,必要时可根据GB/T 6495.4标准规定作温度和辐照度的修正。

二、光伏组件衰减率

(一)光伏组件衰减率定义

光伏组件衰减率是指光伏组件运行一段时间后,在标准测试条件下(AM1.5、组件温度25℃,辐照度1000W/m2)最大输出功率与投产运行初始最大输出功率的比值。

(二)光伏组件衰减率的确定

光伏组件衰减率的确定可采用加速老化测试方法、实地比对验证方法或其它有效方法。加速老化测试方法是利用环境试验箱模拟户外实际运行时的辐照度、温度、湿度等环境条件,并对相关参数进行加倍或者加严等控制,以实现较短时间内加速组件老化衰减的目的。加速老化测试完成后,要标准测试条件下,对试验组件进行功率测试,依据衰减率公式,判定得出光伏组件发电性能的衰减率。

光伏电站发电效率递减原因

影响光伏发电的因素有很多,不过可以根据以下几点找找原因:

太阳辐射量

太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如PV-SYS、RETScreen得到。

太阳能电池组件的倾斜角度

从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下:

A、纬度0°~25°,倾斜角等于纬度

B、纬度26°~40°,倾角等于纬度加5°~10°

C、纬度41°~55°,倾角等于纬度加10°~15°

太阳能电池组件的转化效率

光伏组件是影响发电量的最核心因素。2015年2月5日国家能源局综合司颁布的《关于征求发挥市场作用促进光伏技术进步和产业升级意见的函》中规定,自2015年起,享受国家补贴的光伏发电项目采用的光伏组件和并网逆变器产品应满足《光伏制造行业规范条件》相关指标要求。其中,多晶硅电池组件转换效率不低于15.5%,单晶硅电池组件转换效率不低于16%。目前,市场上一线品牌的多晶硅组件转化效率一般达到16%以上,单晶硅的转化效率一般在17%以上。

系统损失

和所有产品一样光伏电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。

一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。

(1)组合损失

凡是串联就会由于组件的电流差异造成电流损失;并联就会由于组件的电压差异造成电压损失;而组合损失可达到8%以上,中国工程建设标准化协会标准规定小于10%。

因此为了减低组合损失,应注意:

1)应该在电站安装前严格挑选电流一致的组件串联。

2)组件的衰减特性尽可能一致。

(2)灰尘遮挡

在所有影响光伏电站整体发电能力的各种因素中,灰尘是第一大杀手。灰尘对光伏电站的影响主要有:

1)通过遮蔽达到组件的光线,从而影响发电量;

2)影响散热,从而影响转换效率;

3)具备酸碱性的灰尘长时间沉积在组件表面,侵蚀板面造成板面粗糙不平,有利于灰尘的进一步积聚,同时增加了阳光的漫反射。

所以组件需要不定期擦拭清洁。现阶段光伏电站的清洁主要有,洒水车,人工清洁,机器人三种方式。

(3)温度特性

温度上升1℃,晶体硅太阳电池:最大输出功率下降0.04%,开路电压下降0.04%(-2mv/℃),短路电流上升0.04%。为了减少温度对发电量的影响,应该保持组件良好的通风条件。

(4)线路、变压器损失

系统的直流、交流回路的线损要控制在5%以内。为此,设计上要采用导电性能好的导线,导线需要有足够的直径。系统维护中要特别注意接插件以及接线端子是否牢固。

(5)逆变器效率

逆变器由于有电感、变压器和IGBT、MOSFET等功率器件,在运行时,会产生损耗。一般组串式逆变器效率为97-98%,集中式逆变器效率为98%,变压器效率为99%。

(6)阴影、积雪遮挡

在分布式电站中,周围如果有高大建筑物,会对组件造成阴影,设计时应尽量避开。根据电路原理,组件串联时,电流是由最少的一块决定的,因此如果有一块有阴影,就会影响这一路组件的发电功率。当组件上有积雪时,也会影响发电,必须尽快扫除。

  • 热门资讯
  • 最新资讯
  • 手游排行榜
  • 手游新品榜