编辑:sx_duxl
2016-11-15
学习奥数主要是锻炼我们的数学思维以及对右脑的开发都有一定的好处,下面为大家分享奥数应用题知识点之鸡兔同笼问题,希望对大家有用!
一、鸡兔同笼问题知识点
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)
关键问题:找出总量的差与单位量的差。
二、鸡兔同笼问题例题透析
例1、鸡兔同笼,共有14个头,38条腿,那么有()只鸡,有()兔.
分析:假设14只全是兔,则一共有腿14×4=56条,这比已知的38条腿多了56-38=18条,因为1只兔比1只鸡多4-2=2条腿,所以鸡有:18÷2=9只,则兔有14-9=5只,据此即可解答.
解答:解:假设全是兔,则鸡有:
(14×4-38)÷(4-2),
=18÷2,
=9(只),
则兔有:14-9=5(只),
答:有9只鸡,5只兔.
故答案为:9;5.
点评:此题属于鸡兔同笼问题,采用假设法即可解答.
例2.今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?
解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是
(25×4-86)÷(4-3)=14(岁).
1998年,兄年龄是
14-4=10(岁).
父年龄是
(25-14)×4-4=40(岁).
因此,当父的年龄是兄的年龄的3倍时,兄的年龄是
(40-10)÷(3-1)=15(岁).
这是2003年.
答:公元2003年时,父年龄是兄年龄的3倍.
三、鸡兔同笼问题练习题
1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?
2. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?
3. 一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?
4. 自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?
5. 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?
6. 如果被乘数增加15,乘数不变,积就增加180;如果被乘数不变,乘数增加4,那么积就增加120.原来两个数相乘的积是多少?
7. 编一本695页的故事书的页码,一共要用多少个数字?其中数字“5”用去了几个?
8. 编一本辞典一共用去了6889个数字,这本辞典共有几页?
9. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?
10. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?
以上是为大家分享的奥数应用题知识点之鸡兔同笼问题,希望大家能够认真学习,认真做题,同时希望大家能够顺利进入理想的重点中学!
相关推荐
标签:小升初奥数
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。