小升初数学知识点名师透析

来源:互联网 编辑:zhangls

2011-05-30

 一、关于小升初数学命题趋势的分析

纵观各级各类考试,数学命题有以下三个方面的趋势:

(一)综合性 主要考查学生的“双基”,以及知识的综合运用能力。

如:小学数学的分数、小数的四则混合运算。运算中要注意:小数的相加、相减、相除三类运算中的小数点对齐问题,乘法运算中的乘数与被乘数共有几位小数,所得的积就有几位小数,不够时要补零。分数的加减运算要注意通分(先找出分母的最小公倍数,再将分子、分母同时扩大相同的倍数。)带分数相加减,应将整数、分数部分分别相加减,然后将所得的结果进行合并,如分数部分不够减,要考虑向整数部分“借”。分数运算中“约分”的思想是化繁为简的理论基础,要将它和关系“重新组合”、“拆项”等结合起来,加以训练。

(二)延续性 所谓“延续性”是指相关数学知识在以后的学习中是否会重新“遭遇”。从数学体系的角度来看,“函数”的思想、“立体感”的建立等都是非常重要的。这些内容在小学数学中往往表现为应用题的列式,圆、圆柱、圆锥、长方体、正方体的识图、运算与转化等。

(三)变通性 所谓“变通性”是指学生对相关数学知识的灵活运算的能力。常见的有“发现新规律,定义新运算的能力”、“优化设计(最大、最小)的能力”、“分析推理(执因索果)的能力”、以及“公式的变形与迭代(包括单位换算、数的进制、手表问题等)的能力”。

二、关于小升初数学应用问题的归类

小学数学的应用题往往是概念、公式的应用。

小学数学常用的一些概念、公式,应加以记忆。如:存入银行的钱叫做本金;取款时银行多付的钱叫做利息;购买建设债券和储蓄在实质上是一样的,是支援国家建设的另一种方式,只是债券的利率一般高于定期储蓄;“一成”就是十分之一,改写成百分数就是10%;表示两个比相等的式子叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;在比例里,两个外项的积等于两个内项的积(比例的基本性质);比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例,解比例要根据比例的基本性质来解。图上距离和实际距离的比叫做比例尺;一种量变化,另一种量也随着变化,这两种量是两种相关联的量;圆的周长公式:C=2Π r或C=ΠD;圆柱的侧面积=底面周长×高;长方体的体积=长×宽×高=底面积×高;长方形的面积=长×宽;正方形的面积=边长×边长;平行四边形的面积=底×高;三角形的面积=1/2 ×底×高;梯形的面积:= 1/2(上底+下底)×高;圆的面积=∏×R×R;长方体、正方体和圆柱的体积公式可以统一写成:“底面积×高”等等。

(一)分数、百分数的应用题 “分率(百分率、利率、折扣)”的概念是解题的关键,其中标准量“1”的选取是解题突破口。

例题推荐:

1、有甲、乙二人,已知甲的体重的2/5与乙的体重的2/3相等,甲的体重的3/7比乙的体重的3/4少1.5千克,求甲、乙二人的体重。

2、如师附小六年级有120人参加数学开放题竞赛,获奖人数占总人数的 ,而获奖人数中的 是女生。获奖的男生占总人数的几分之几?

3、商店同时卖出两台洗衣机,每台2400元,其中一台比进价高20%,另一台比进价低20%。总的来看商店是赚钱还是赔钱?

(二)工程问题 工程问题要弄清工作量、工作效率、工作时间三者之间的关系:工作量=工作效率*工作时间;工作效率= 工作量/工作时间;工作时间=工作量/工作效率;总工作量=各分工作量之和

例题推荐:

1、一个水池有两个排水管甲、乙,一个进水管丙,若同时开放甲、丙两管,20小时可将满水池排空,若同时开放乙、丙两水管,30小时可将满水池排空,若单独开丙管,60小时可将空池注满,若同时打开甲、乙、丙三水管,要排空水池中的满水池,需几小时?[提示:1/(1/20+1/30+1/60)=10]

2、安装一条煤气管道,若由甲工程队单独施工144天可以完成。现在先由甲工程队施工2天,接着乙工程队加入一起施工,两队合做4天后,又调来丙工程队一起施工,三队联合施工8天后,共完成了全部工程的1/3,又过了16天,前后一共完成了全部工程的5/6。余下的工程由丙工程队单独施工,还要多少天才能全部完成?

3、甲、乙两人同时分别加工同样多的一种零件,甲做了它的1/4,而乙还有45个没做。这时甲效率提高了20%,则当甲做了余下的2/3时,乙还有他原工作量的1/3没做。问两人的总工作量是多少?

(三)行程问题 从表层意义上是考查学生对路程、时间、速度三者关系的认识,从深层次的角度分析,实际上是检查学生的变通能力,因为需要考虑的不仅仅是“路程=时间*速度;时间=路程 /速度;速度=路程/时间 ”,往往还涉及到时间、地点和方向等诸多要素,因此,解这类题目的关键是认准哪些是“变化的条件”,如何在解题中准确运用“不变的公式”。

例题推荐:

1、一船逆水而上,船上某人有一件东西掉入水中,当船调头时已过5分钟,若船在静水中的速度为每分钟50米,问再经过多长时间船才能追上所掉的东西?

2、一位足球运动员沿着720米长的湖边跑了一圈。已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他跑后一半路程用了多少秒?

3、A、B两地相距13.5千米,甲、乙分别从A、B两地同时相向而行,往返一次甲比乙早返回原地,途中两人第一次相遇于点C,第二次相遇于点D。已知两次相遇时间间隔为3小时20分,C、D相距3千米,求甲、乙两人的速度。

4、客船从甲港开往乙港,货船从乙港开往甲港,两船同时相向开出10小时相遇。相遇后又继续行驶3小时,这时客船离乙港还有280千米,货船离甲港还有420千米,甲乙两港相距多少千米?

(四)*浓度问题(不作重点要求) 这类题目要求了解的关系式: 溶液=溶质+ 溶剂;浓度=溶质 / 溶液;溶液= 溶质 / 浓度;溶质= 溶液*浓度

例题推荐:

甲、乙两只装满浓硫酸溶液的容器,甲容器装有浓度为8%的硫酸600千克,乙容器装有浓度为40%的硫酸400千克,各取多少千克分别放入对方容器中,才能使这两个容器溶液的浓度一样?

三、简单的几何问题

面积、体积问题 主要考虑以下内容:

平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?

提示:我们在得到长方形面积计算公式后,可以通过剪、拼等方法,对图形进行转化,从而得出相应图形的面积计算公式。

求表面积就是求立体图形的什么?(所有面的面积总和)长方体表面积是怎样算的?这类题还有什么简便的方法?圆柱体表面积是怎样算的?

提示:立体图形的表面积是所有面的面积的总和,所以要先求各部分的面积,然后相加。长方体和圆柱体的表面积都可以用侧面积加两个底面积。

求长方体和圆柱的体积有什么相同的地方?

提示:长方体其实也是一个柱体,长方体和圆柱体的体积,其实都是用底面积乘以高。

圆柱(锥) 是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的。要认识圆柱的底面、侧面和高;认识圆锥的底面和高。要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

圆柱的体积:V=Sh;圆锥的体积公式:V= Sh圆锥的体积=等底等高的圆柱的体积× =底面积×高

四、简单的统计

简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。

在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。

要认识统计图,并明确统计图的特点和作用,经历“收集、整理数据和用统计图表示数据、整理结果”过程。能根据绘制出的统计图,分析数据所反映的一些简单事实,能作出一些简单的推理与判断,进一步认识统计是解决实际问题的一种策略和方法。在学习统计知识的同时,感受数学与生活的联系及其在生活中的应用。

求平均数的关键,是要先弄清被平均的数量是什么,总数是多少;以及要求的平均数是按照什么平均的,要平均分成多少份等等。

掌握一些与百分数有关的概念,如:发芽率,出勤率,成活率,利息等。了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。税收的计算也是百分数的一种具体应用。了解什么是个人所得税,怎样计算个人所得税? 什么是成活率?它的计算公式是什么

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。