2016年小升初数学中类比方法精解

编辑:sx_yanl

2015-09-22

要想在考试中取得好成绩就必须注重平时的练习与积累,精品学习网为大家整理了小升初数学中类比方法精解,小朋友们一定要仔细阅读哦!

把一个立方体切成27个相等的小立方体,如果在切的过程中不允许调整,很显然,要6刀才能切成,现在的问题是,如果允许在切的过程中调整,即第一刀切完后,如果你愿意的话,切成的两部分可以重叠到一起后再切第二刀,在切第三刀之前,也可以把前两刀切出的部分任意重叠,如此类推.请问,按这样的切法,是否可以用少于6刀切出27个相等的小立方体?

分析这个问题并不容易,一是三维空间对人的想象力要求比较高,二是各种切法情况比较复杂,难于一一分析.

我们不妨用类比的方法,先考虑一个二维情况下的类似问题:把一个正方形分成9个大小一样的小正方形,如果的切的时候不能调整,容易知道,要四刀.现在的问题是,如果可以调整,可以将切出的部分重叠后再切,可以少于四刀吗?

您去试一试就知道,这个问题还是不容易解决!

一不做,二不休,考虑一维情况下类似的题目:把一条直线平均分成三段,不能调整的话,两刀?如果能调整呢?情况如何?你很快可以发现,还是要两刀!怎么说明这个问题?您很快会找到中间那段,这段有两个端点,每个端点处总是要切一下的!

返回去想切正方形的事!也看中间那个正方形.它有四条边,不论你怎么切,每一刀总只能切一条边!于是4刀是最少的!

于看三维的情况:也考虑最中间的正方体.它有六个面,不论你怎么切,每刀最多切出一个面来.那么最少要六刀!

问题就这样解决了!

小升初数学中类比方法精解就为大家整理到这,想要了解更多小升初辅导资料欢迎关注精品学习网小升初频道!

相关推荐:

小升初数学知识点:关于平均数问题解答

2015年小升初数学运算定律公式总结

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。