编辑:sx_zhangby
2014-03-30
第二届华杯赛初赛试题答案
参考答案
第二届华杯赛初赛试题答案:1.第八届 2.11 3.121 4.1981 5.58% 6.0 7.13.42 8.
9.第三个 10.3点钟 11.13 12.36人 13.第十次交换座位后,小兔坐在第2号位子
14.能排成4个被11除余8的数 15.100个
1.【解】“每隔一年举行一次”的意思是每两年举行1次。1988年到2000年还有2000-1988=12年,因此还要举行12÷2=6届。1988年是第二届,所以2000年是1+6=8届。
这题目因为数字不大,直接数也能很快数出来:1988、1990、1992、1994、1996、1998、2000年分别是第二、三、四、五、六、七、八届.
答:2000年举行第八届.
【注】实际上,第三届在1991年举行的,所以2001年是第八届.
2.【解】由于两只蚂蚁的速度相同,所以大、小圆上的蚂蚁爬一圈的时间的比应该等于圈长的比.而圈长的比又等于半径的比,即:33∶9.
要问两只蚂蚁第一次相遇时小圆上的蚂蚁爬了几圈,就是要找一个最小的时间它是大、小圆上蚂蚁各自爬行一圈所需时间的整数倍.适当地选取时间单位,使小圆上的蚂蚁爬一圈用9个单位的时间,而大圆上的蚂蚁爬一圈用33个单位的时间.这样一来,问题就化为求9和33的最小公倍数的问题了.不难算出9和33的最小公倍数是99,所以答案为99÷9=11.
答:小圆上的蚂蚁爬了11圈后,再次碰到大圆上的蚂蚁.
3. 【解】把棋盘分割成一个平行四边形和四个小三角形,如下图。平行四边形中棋孔数为9×9=81,每个小三角形中有10个棋孔。所以棋孔的总数是81+10×4=121(个)
答:共有121个棋孔
4.【解】由于得数有两位小数,小数点不可能加在个位数之前.如果小数点加在十位数之前,所得的数是原来四位数的百分之一,再加上原来的四位数,得数2000.81应该是原来四位数的1.01倍,原来的四位数是2000.81÷1.01=1981.
类似地,如果小数点加在百位数之前,得数2000.81应是原来四位数的1.001倍,小数点加在千位数之前,得数2000.81应是原来四位数的1.0001倍.但是(2000.81÷1.001)和(2000.81÷1.0001)都不是整数,所以只有1981是唯一可能的答案.
答:这个四位数是1981.
【又解】注意到在原来的四位数中,一定会按顺序出现8,1两个数字.小数点不可能加在个位数之前;也不可能加在千位数之前,否则原四位数只能是8100,大于2000.81了.
无论小数点加在十位数还是百位数之前,所得的数都大于1而小于100.这个数加上原来的四位数等于2000.81,所以原来的四位数一定比2000小,但比1900大,这说明它的前两个数字必然是1,9.由于它还有8,1两个连续的数字,所以只能是1981.
5.【解】格子布的面积是下图面积的9倍,格子布白色部分的面积也是图上白色面积的9倍,下图中白色部分所占面积的百分比是:
=0.58=58%
答:格子布中白色部分的面积是总面积的58%.
6.【解】因为差的首位是8,所以被减数首位是9,减数的首位是1。第二位上两数的差是9,所以被减数的第二位是9,减数的第二位是0。于是这六个方框中的数字的连乘积等于0。
答:六个方框中的数字的连乘积等于0.
7.【解】每个圆和正方形的公共部分是一个扇形,它的面积是圆的面积的四分之一.因此,整个图形的面积等于正方形的面积加上四块四分之三个圆的面积.而四块四分之三个圆的面积等于圆面积的三倍.于是整个图形的面积等于正方形的面积加上圆面积的三倍.也就是2×2+π×1×1×3≈13.42(平方米)
答:这个正方形和四个圆盖住的面积约是13.42平方米.
8.【解】 (米).
答:七根竹竿的总长是 米.
【又解】我们这样考虑:取一根2米长的竹竿,把它从中截成两半,各长1米.取其中一根作为第一根竹竿.将另外一根从中截成两半,取其中之一作为第二根竹竿.如此进行下去,到截下第七根竹竿时,所剩下的一段竹竿长为: (米),因此,七根竹竿的总长度是2米减去剩下一段的长,也就是 答:七根竹竿的总长是 米.
9.【解】梯形的面积=(上底+下底)×高-2.但我们现在是比较三个梯形面积的大小,所以不妨把它们的面积都乘以2,这样只须比较(上底+下底)×高的大小就行了.我们用乘法分配律:
第一个梯形的面积的2倍是:(2.12+3.53)×2.71=2.12×2.7I+3.53×2.71,
第二个梯形的面积的2倍是:(2.7l+3.53)×2.12=2.71×2.12+3.53×2.12,
第三个梯形的面积的2倍是:(2.12+2.71)×3.53=2.12×3.53+2.7I×3.53
先比较第一个和第二个两个式子右边的第一个加数,一个是2.12×2.71,
另一个是2.71×2.12由乘法交换律,这两个积相等因此只须比较第二个加数的大小就行了,显然3.53×2.71比3.53×2.12大,因为2.71比2.12大因此第一个梯形比第二个梯形的面积大.类似地,如果比较第一个和第三个,我们发现它们右边第二个加数相等.而第一个加数2.12×2.71<2.12×3.53.因此第三个梯形比第一个梯形面积大.综上所述,第三个梯形面积最大.
答:第三个梯形面积最大.
10.【解】因为电子钟每到整点响铃,所以我们只要考虑哪个整点亮灯就行了.从中午12点起,每9分钟亮一次灯,要过多少个9分钟才到整点呢?由于1小时=60分钟,这个问题换句话说就是:9分钟的多少倍是60分钟的整数倍呢?即求9分和60最小公倍数.9和60的最小公倍数是180.这就是说,从正午起过180分钟,也就是3小时,电子钟会再次既响铃又亮灯.
答:下一次既响铃又亮灯时是下午3点钟.
11.【解】每种花色各选3张,一共12张,可见抽12张牌不能保证有4张牌是同一花色的.
如果抽13张牌,由于花色只有4种,其中必有一种多于3张,即必有4张牌同一花色.
答:至少要抽13张牌,才能保证有四张牌是同一花色的.
12.【解】先增加一条船,那么正好每条船坐6人.然后去掉两条船,就会余下6×2=12名同学,改为每条船9人,也就是说,每条船增加9-6=3人,正好可以把余下的12名同学全部安排上去,所以现在还有12÷3=4条船,而全班同学的人数是9×4=36人
【又解】由题目的条件可知,全班同学人数既是6的倍数,又是9的倍数,因而是6和9的公倍数.6和9的最小公倍数是18.如果总数是18人,那么每船坐6人需要有18÷6=3条船,而每船坐9人需要18÷9=2条船,就是说,每船坐6人比每船坐9人要多一条船.但由题目的条件,每船坐6人比每船坐9人要多用2条船.可见总人数应该是18×2=36.
答:这个班共有36个人
13.【解】根据题意将小兔座位变化的规律找出来.
可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处.知道了这个规律,答案就不难得到了.第十次交换座位后,小兔的座位应该是第2号位子.
答:第十次交换座位后,小兔坐在第2号位子.
14.【解】用1、9、8、8可排成12个四位数,即1988,1898,1889,9188,9818,9881,8198,8189,8918,8981,8819,8891
它们减去8变为1980,1890,1881,9180,9810,9873,8190,8181,8910,8973,8811,8883
其中被11整除的仅有1980,1881,8910,8811,即用1、9、8、8可排成4个被1除余8的四位数,即1988,1889,8918,8819.
【又解】什么样的数能被11整除呢?一个判定法则是:比较奇位数字之和与偶位数字之和,如果它们之差能被11除尽,那么所给的数就能被11整除,否则就不能够.
现在要求被11除余8,我们可以这样考虑:这样的数加上3后,就能被11整除了.所以我们得到“一个数被11除余8”的判定法则:将偶位数字相加得一个和数,再将奇位数字相加再加上3,得另一个和数,如果这两个和数之差能被11除尽,那么这个数是被11除余8的数;否则就不是.
要把1、9、8、8排成一个被11除余8的四位数,可以把这4个数分成两组,每组2个数字.其中一组作为千位和十位数,它们的和记作A;另外一组作为百位和个位数,它们之和加上3记作B.我们要适当分组,使得能被11整除.现在只有下面4种分组法:
经过验证,第(1)种分组法满足前面的要求:A=1+8,B=9+8+3=20,B-A=11能被11除尽.但其余三种分组都不满足要求.
根据判定法则还可以知道,如果一个数被11除余8,那么在奇位的任意两个数字互换,或者在偶位的任意两个数字互换,得到的新数被11除也余8.于是,上面第(1)分组中,1和8中任一个可以作为千位数,9和8中任一个可以作为百位数.这样共有4种可能的排法:1988,1889,8918,8819.
答:能排成4个被11除余8的数
15.【解】我们先在右图小正方形中找一个代表点,例如右下角的点E作为代表点.然后将小正方形按题意放在围棋盘上,仔细观察点E应在什么地方.通过观察,不难发现:
(1)点E只能在棋盘右下角的正方形ABCD(包括边界)的格子点上.
(2)反过来,右下角正方形ABCD中的每一个格子点都可以作为小正方形的点E,也只能作为一个小正方形的点E.这样一来,就将“小正方形的个数”化为“正方形ABCD中的格子点个数”了.很容易看出正方形ABCD中的格子点为10×10=100个.
答:共有100个。
相关推荐
标签:华杯赛
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。