来源:精品学习网 编辑:xiaoxue1
2017-11-08
同学们学习奥数有利于我们数学思维的提升,所以我们要多做题,勤加练习才能在成绩上有更大的提高,精品学习网为大家分享小学二年级奥数训练题,希望同学们认真完成。
小学二年级奥数训练题
【第一篇:聪明的儿子】
有个老汉想考考他的四个聪明的儿子,他拿出六顶帽子,三顶红的、两顶蓝的和一顶黄的。然后,让四个儿子按大的在前小的在后的顺序排成一路纵队,并让他们闭上眼睛。接着,给他们每人戴上一顶帽子,藏起其余两顶。当他们睁开眼睛后,每个人都只能看见前边人的帽子。这时,老汉依次问小儿子、三儿子和二儿子,“你戴的帽子是什么颜色?”他们都回答“不知道”。最后,老汉又问大儿子。大儿子想了一会儿,正确地说出了自己戴的帽子的颜色。
问:大儿子戴的帽子是什么颜色?他是如何判断的?
答案解析
只要前面两个人有人带两个蓝色帽子和一个黄色帽子小儿子就会知道自己的帽子,他不知道代表前面3个至少有一个红帽子,三儿子看见前面也有红帽子所以不知道自己的帽子,二儿子也一样,所以大儿子就知道自己是红帽子
【第二篇:帽子是什么颜色?】
老师拿来五顶帽子,两顶红的三顶白的。他让三个聪明的同学甲、乙、丙按甲、乙、丙的顺序排成一路纵队,并闭上眼睛,然后分别给他们各戴上一顶帽子,同时把余下的帽子藏起来。当他们睁开眼后,每人只能看到站在自己前面的人的帽子,乙和丙都判断不出自己所戴帽子的颜色,而站在最前面的甲却根据此情况判断出了自己所戴帽子的颜色。
甲戴的帽子是什么颜色?他是怎样判断的?
答案解析
这是一个典型的逻辑推理问题。甲站在最前面,虽然看不见任何一顶帽子,但他可以想到:如果我和乙戴的都是红帽子,因为一共只有两顶红帽子,那么丙就会判断出自己戴的是白帽子。丙判断不出自己戴的帽子的颜色,说明我和乙戴的帽子是两白或一白一红。
甲接着想:乙也很聪明,当他看到丙判断不出自己戴的帽子的颜色时,他也能判断出我们两人戴的帽子是两白或一白一红。此时,如果他看到我戴是红帽子,那么他就会知道自己戴的是白帽子,只有我戴的是白帽子时,他才可能猜不出自己戴的帽子的颜色。所以,我戴的一定是白帽子。
【第三篇:哪个结论正确】
甲说:“乙和丙都说谎。”乙说:“甲和丙都说谎。”丙说:“甲和乙都说谎。”根据三人所说,你判断一下,下面的结论哪一个正确:
(1)三人都说谎;
(2)三人都不说谎;
(3)三人中只有一人说谎;
(4)三人中只有一人不说谎。
答案解析
解:(1)假设“三人都说谎”是正确的,那么乙和丙确实说谎,所以甲说的是真话,产生矛盾,这个说法是错误的;
(2)假设“三个人都不说谎”是正确的,那么与甲乙丙三人的说法都矛盾,所以这个说法是错误的;
(3)假设“三人中有一人且只有一人说谎”是正确的,如果甲说谎,那么与乙说的话相矛盾,同理乙说谎与丙的话相矛盾,丙说谎与甲的话相矛盾;这个说法是错误的;
(4)假设“三人中有一人且只有一人不说谎”;如果甲说真话,那么乙和丙都说谎,同理乙说真话,甲丙都说谎,丙说真话,甲乙都说谎;没有矛盾;所以只有(4)的说法是正确的。
因此,本题正确答案是:(4)。
【第四篇:谁做了好事?】
A,B,C,D四个同学中有两个同学在假日为街道做好事,班主任把这四人找来了解情况,四人分别回答如下。
A:“C,D两人中有人做了好事。”
B:“C做了好事,我没做。”
C:“A,D中只有一人做了好事。”
D:“B说的是事实。”
最后通过仔细分析调查,发现四人中有两人说的是事实,另两人说的与事实有出入。
到底是谁做了好事?
答案解析
我们用假设法来解决。题目说四人中有两人说的是事实,另两人说的与事实有出入。注意,此处的“与事实有出入”表示不完全与事实相符,比如,当B,C都做了好事,或B,C都没做好事,或B做了好事而C没做好事时,B说的话都与事实有出入。
因为B与D说的是一样的,所以只有两种可能,要么B与D正确,A与C错;要么B与D错,A与C正确。(1)假设B与D说的话正确。这时C做了好事,A说C,D两人中有人做了好事,A说的话也正确,这与题目条件只有“两人说的是事实”相矛盾。所以假设不对。
(2)假设A与C说的话正确。那么做好事的是A与C,或B与D,或C与D。若做好事的是A与C,或C与D,则B说的话也正确,与题意不符;若做好事的是B与D,则B说的话与事实不符,符合题意。综上所述,做好事的是B与D。
标签:小学二年级奥数
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。