您当前所在位置:首页 > 小学 > 奥数 > 小学六年级奥数

2015小学六年级奥数专题解析:抽屉原理

编辑:sx_mengxm

2015-08-06

小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,精品学习网为同学们特别提供了小学六年级奥数专题解析,希望对大家的学习有所帮助!

【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?

【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?

【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。

【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。

按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。

思考:1.能用抽屉原理2,直接得到结果吗?

2.把题中的要求改为3双不同色袜子,至少应取出多少只?

3.把题中的要求改为3双同色袜子,又如何?

【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?

【分析与解】从最“不利”的取出情况入手。

最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。

故总共至少应取出10+5=15个球,才能符合要求。

思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?

当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它--抽屉原理,这是你的一条“决胜”之路。

以上就是精品学习网推荐的小学六年级奥数专题解析,希望对大家学习愉快。

相关推荐:

小学六年级奥数趣味试题精讲:最简分数

2015年小学六年级奥数考点分析:余数问题


免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。