编辑:sx_wangx
2015-12-04
小学生想要学好数学,做题是最好的办法,以下是精品学习网为大家提供的奥数题最小值,供大家复习时使用!
有3个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除.那么这样的3个自然数的和的最小值是多少?
答案与解析:
设这三个自然数为A,B,C,且A= × ,B= × ,C= × ,当 、 、c均是质数时显然满足题意,为了使A,B,C的和最小,则质数 、 、 应尽可能的取较小值,显然当 、 、 为2、3、5时最小,有A=2×3=6, B=3×5=15,C=5×2=10.
于是,满足这样的3个自然数的和的最小值是6+15+10=31.
科学的学习方法和合理的复习资料能帮助大家更好的学好数学这门课程。希望为大家准备的奥数题最小值,对大家有所帮助!
相关推荐:
标签:小学六年级奥数
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。