您当前所在位置:首页 > 小学 > 奥数 > 小学奥数专项 > 几何

2013年几何练习题:五大模型3

编辑:sx_yangk

2013-09-30

现在的奥数,其难度和深度远远超过了同级的义务教育教学大纲。而相对于这门课程,一般学校的数学课应该称为“普通基础数学”。特此精品学习网为大家准备了2013年几何练习题:五大模型3。

一个任意凸六边形ABCDEF,P、Q、M、N分别为AB、BC、DE和EF边上的中点。已知阴影部分的面积是100平方厘米,那么六边形ABCDEF的面积是多少平方厘米?

分析与解 连接BF、 BE、 BD,在三角形ABF中,P是AB的中点,那么三角形BPF和三角形APF是等底等高的三角形。因此三角形BPF和三角形APF的面积相等。

同理,由于N为EF中点,所以三角形FNB和三角形 ENB的面积相等;由于M为DE中点,所以三角形DMB和三角形EMB的面积相等;由于Q为BC中点,所以三角形BQD和三角形CQD的面积相等。

由此得出:三角形BPF+三角形BQD+三角形DMB+三角形FNB=三角形APF+三角形CQD+三角形EMB+三角形ENB。

而三角形BPF+三角形BQD+三角形DMB+三角形FNB=阴影面积=100平方厘米,所以三角形APF+三角形CQD+三角形EMB+三角形ENB=空白部分面积=100平方厘米。

因此,六边形 ABCDEF的面积为100×2=200平方厘米。

答:六边形ABCDEF的面积是200平方厘米。

2013年几何练习题:五大模型3由精品学习网独家发布,敬请同学们关注!

阅读本文的同学还看了:

小学奥数华杯赛几何之圆与扇形例题详解

更多内容请点击小学奥数专项

标签:几何

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。