您当前所在位置:首页 > 小学 > 奥数 > 小学奥数专项 > 数论

数论练习专题:完全平方数5

编辑:sx_yangk

2013-10-08

精品学习网为您整理了数论练习专题:完全平方数5,希望和您一起探讨奥数!

1、一个自然数减去45及加上44都仍是完全平方数,求此数。

解:设此自然数为x,依题意可得

x-45=m^2................(1)

x+44=n^2................(2)(m,n为自然数)

(2)-(1)可得 n^2-m^2=89, (n+m)(n-m)=89

但89为质数,它的正因子只能是1与89,于是。解之,得n=45。代入(2)得。故所求的自然数是1981。

2、求证:四个连续的整数的积加上1,等于一个奇数的平方。

分析:设四个连续的整数为n,(n+1),(n+2),(n+3),其中n为整数。欲证

n(n+1)(n+2)(n+3)+1是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

证明:设这四个整数之积加上1为m,则

m=n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2=[n(n+1)+(2n+1)]^2

而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。这就证明了m是一个奇数的平方。

由精品学习网为您提供的数论练习专题:完全平方数5,感谢您阅读!

阅读本文的同学还看了:

几何强化练习:几何的五大模型练习2

勾股定理练习17

小学立体几何例题详解1

更多内容请点击小学奥数专项

标签:数论

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。