您当前所在位置:首页 > 小学 > 奥数 > 小学奥数专项 > 数论

小升初奥数数论综合常考内容讲义

编辑:sx_wanghf

2014-05-19

小升初奥数数论综合常考内容讲义:

【内容概述】涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.

1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?

【分析与解】 我们知道如果有5个连

续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.

第一种情况:当n为4时,如果其内含有5的倍数(个位数字为O或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;

如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;

所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.

第二种情况:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.

第三种情况:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.

至于n取1显然不满足了.

所以满足条件的n是4.

2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,

(1)a+b的最小可能值是多少?

(2)a+b的最大可能值是多少?

【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,

67,71,73,79,83,89,97.

可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.

所以满足条件的a+b最小可能值为30,最大可能值为168.

3.如果某整数同时具备如下3条性质:

①这个数与1的差是质数;

②这个数除以2所得的商也是质数;

③这个数除以9所得的余数是5.

那么我们称这个整数为幸运数.求出所有的两位幸运数.

【分析与解】 条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件.

其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.

所以两位幸运数只有14.

4.在555555的约数中,最大的三位数是多少?

【分析与解】555555=5×111×1001

=3×5×7×11×13×37

显然其最大的三位数约数为777.

5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?

【分析与解】 从长2002毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商.而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77.231÷77=3.

不难得知,最后剪去的正方形边长为77毫米.

6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案.

【分析与解】 设这三个数为a、b、c,且a

小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=2×7,其中质因数7只有14含有,无法找到两个不与14互质的数.

所以只剩下6,10,12,15,18这5个数存在可能的排列.

小升初数学常考内容讲义:数论综合1

小升初数学常考内容讲义:数论综合2

小升初数学常考内容讲义:数论综合3

小升初数学常考内容讲义:数论综合4

相关推荐:

小学六年级奥数数论综合专题剖析  

小学奥数数论数的整除问题练习  

标签:数论

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。