您当前所在位置:首页 > 小学 > 奥数 > 小学奥数专项 > 数论

精选六年级奥数之整数拆分详解

编辑:sx_yanl

2015-10-12

小学生学习数学时需要多做题,练习时一定要亲自动手演算。以下是精品学习网小学频道为大家提供的六年级奥数之整数拆分,供大家复习时使用!

在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.

(1)请写出只有3种这样的表示方法的最小自然数.

(2)请写出只有6种这样的表示方法的最小自然数.

分析:(1)关于某整数,它的“奇数的约数的个数减1“,就是用连续的整数的和的形式来表达种数;根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;

(2)有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:

364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40.

解答:解:根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);

有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;

根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),

有连续的2,3、6、9、10、27个数相加:

364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40.

点评:关键是理解题意,明确用2个以上的连续自然数的和来表达一个整数的方法.

科学的学习方法和合理的复习资料能帮助大家更好的学好数学这门课程。希望为大家准备的六年级奥数之整数拆分,对大家有所帮助!

相关推荐:

详细解答六年级奥数整数的裂项与拆分

精答六年级奥数例题质因数

标签:数论

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。