您当前所在位置:首页 > 小学 > 奥数 > 小学奥数专项 > 数论

数论问题:奇数、偶数试题分析

编辑:

2015-11-12

8、设a1,a2,…,a64是自然数1,2,…,64的任一排列,令b1=a1-a2,b2=a3-a4,…,b32=a63-a64;c1=b1-b2,c2=b3-b4,…,c16=b31-b32;d1=c1-c2,d2=c3-c4,…,d8=c15-c16;……

这样一直做下去,最后得到的一个整数是奇数还是偶数?

1、至少有6个偶数。

2、奇数。解:1234÷2=617,所以在任取的1234个连续自然数中,奇数的个数是奇数,奇数个奇数之和是奇数,所以它们的总和是奇数。

3、33。提示:这串数排列的规律是以“奇奇偶”循环。

4、不能。

如果1010能表示成10个连续自然数之和,那么中间2个数的和应当是1010÷5=202。但中间2个数是连续自然数,它们的和应是奇数,不能等于偶数202。所以,1010不能写成10个连续自然数之和。

5、不能。提示:仿例3。

6、证:设得7分的学生胜了x1局,败了y1局,得 20分的学生胜了x2局,败了y2局。由得分情况知:

x1-y1=7,x2-y2=20。

如果比赛过程中无平局出现,那么由每人比赛的场次相同可得x1+y1=x2+y2,即x1+y1+x2+y2是偶数。另一方面,由x1- y1=7知x1+y2为奇数,由x2-y2=20知x2+y2为偶数,推知x1+y1+x2+y2为奇数。这便出现矛盾,所以比赛过程中至少有一次平局。

7、奇数。解:黑板上所有数的和S=1+2+…+909是一个奇数,每操作一次,总和S减少了a+b-(a-b)=2b,这是一个偶数,说明总和S的奇偶性不变。由于开始时S是奇数,因此终止时S仍是一个奇数。

8、偶数。

标签:数论

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。