编辑:
2016-05-12
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b. 解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?(本环节通过为学生设计困难,让学生想出有复杂问题从简单入手,从学生已有的生活经验出发,让学生自由设计,然后引导学生自主探索、合作交流,得出“两端要栽:棵数=间隔数+1“的关系,体现教学方法的开放性。)
二、 合作探究,“两端不种”的规律
1. 猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2. 独立探究,合作交流。
3. 展示小组研究成果,发现规律,验证前面的猜测。
小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4. 做一做。
① 在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)
② 师:同学们注意看,这道题发生了什么变化?课件闪烁:将“一侧”改为“两侧”
问:“两侧种树 ”是什么意思?实际要种几行树?会做吗?赶紧做一做。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。 (探讨“两端不种”的规律,充分放手让学生自己讨论研究,用同样的方法从简单问题入手,让学生获得“两端不种”的规律:棵数=段数-1,学生尝试运用新获得的数学知识解决问题。)
四、 回归生活,实际应用
1. 一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4—1=3(次)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2. 我们身边类似的数学问题。
① 看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?
②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?
3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?(练习的设计从多个方面进行应用,让学生针对不同的问题,采用线段图加以分析,让学生深入浅出的理解问题,在头脑里建立数学知识模型,达到学习的高境界——举一反三,灵活应用。)
五、 全课总结
通过今天的学习,你有哪些收获?
标签:四年级数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。