您当前所在位置:首页 > 小学 > 六年级 > 数学 > 六年级数学知识点

2016年六年级数学上册第三单元知识点

编辑:sx_qiy

2016-09-17

大家有没有开始学习了呢?如果还没有,不能再偷懒,现在就要抓紧时间开始了哦!下面为大家分享六年级数学上册第三单元知识点总结,希望对大家有所帮助。

一、分数除法

1、分数除法的意义:

乘法: 因数 × 因数 = 积          除法: 积 ÷ 一个因数 = 另一个因数

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。

规律(分数除法比较大小时):

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)当除数等于1,商等于被除数。

“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,   再算中括号里面的。

二、分数除法解决问题

(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:                单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思: 单位“1”的量×(1分率)=分率对应量

2、解法:(建议:最好用方程解答)

(1)方程:   根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):  分率对应量÷对应分率 = 单位“1”的量

3、求一个数是另一个数的几分之几:就   一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:   两个数的相差量÷单位“1”的量  或:

① 求多几分之几:大数÷小数 – 1

② 求少几分之几: 1 -  小数÷大数

三、比和比的应用

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如  15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

∶    ∶     ∶     ∶

前项  比号  后项   比值

3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:  路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

(2)用求比值的方法。注意: 最后结果要写成比的形式。

如:     15∶10 = 15÷10 = 3/2 = 3∶2

5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

如:  已知两个量之比为,则设这两个量分别为。

路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

以上是精品学习网为大家准备的六年级数学上册第三单元知识点总结,希望对大家有所帮助。

相关推荐:

归纳北师大版数学六年级上册第二单元知识点

新课标人教版六年级数学上册一单元知识点

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。