编辑:sx_mengxm
2015-08-07
从北大打车到四惠,我一定会选择走四环。虽然从北京城中间直穿过去看上去很诱人,但考虑到北京道路几乎总是正南正北的方向,不会真有人认为这样能抄近路吧。精品学习网欢迎大家阅读生活中的数学智力题。
在城市中,我们估算两点之间的距离时,往往不会直接去测量两点之间的直线距离,而会去考虑它们相距多少个街区。在理想模型中,假设每条道路都是水平或者竖直的,那么只要你朝着目标走(不故意绕远路),不管你怎样走,花费的路程都是一样的。今天,我看到了一个非常有意思的名词——出租车几何学 (taxicab geometry) ,其名称就来源于这样的想法。
在出租车几何学中,点还是形如 (x, y) 的有序实数对,直线还是满足 a x + b y + c = 0 的所有 (x, y) 组成的图形,角度大小的定义也和原来一样。只是,(x1, y1) 和 (x2, y2) 的距离重新定义为了 |x1 - x2| + |y1 - y2| ,即两点的横坐标之差加上纵坐标之差。
这是一个对“距离”的合理定义,因为它满足
非负性:两点距离总是大于等于 0 ;
对称性: A 到 B 的距离等于 B 到 A 的距离;
零距离: A 到 B 的距离为 0 当且仅当 A = B ;
三角形不等式:对于任意三点 A 、 B 、 C ,不等式 AB + BC ≥ AC 总成立。
也就是说出租车几何学是建立在一个合理的度量空间上的。这是一个全新的几何世界。
在这个世界里,很多经典几何定理仍然成立。比方说,三角形的内角和还是 180 度。因为,这是一个关于角度的定理,与距离的度量方式无关;既然角度的度量方式不变,三角形的内角和也仍然不会变。
不过,一旦涉及到三角形的边长,很多基本命题就不再成立了。等边对等角是首先被否定掉的定理,底角不相等的等腰三角形满地都是。例如上图中的三角形 ABC ,虽然 AB = AC ,但三角形的两个底角显然不等。类似地,等角对等边也不成立了,例如右图中虽然角 E 和角 F 相等,但 DE = 5 , DF = 7 。 更不可思议的是,在出租车几何中,甚至能画出等边直角三角形来!
在这个几何世界中,边边边不能用来判断三角形全等了。我们可以画出两个三角形 ABC 和 A'B'C' ,它们的对应边都相等,但这两个三角形并不能重合在一起。边角边也不能作为全等三角形的判定依据了——三角形 DEF 和 D'E'F' 都是直角边均为 2 的直角三角形,不过它们明显不全等。
真正有趣的不是出租车几何学世界中的三角形,而是这个世界中的圆。我们仍然定义圆是所有到定点距离为定值的点组成的图形。那么在这个几何世界里,圆是什么样的?下图给出了这个几何世界中一个半径为 2 的圆,圆周上的所有点到 O 的距离均为 2 :
惊奇的不止这一点。圆的方程似乎更简单了,以原点为圆心的单位圆对应的方程是 |x| + |y| = 1 。更神奇的是,这个几何世界的圆周率值也不一样了,它精确地等于 4 !
重新定义距离后,很多图形会变得更加复杂。定义两点间的垂直平分线为到两点距离相等的点组成的图形。在这个几何世界里,垂直平分线是什么样的?在一般情况下,垂直平分线并不是“垂直”平分线,而是一条折线段。
但尽管垂直平分线如此奇怪,不过(一般情况下)三角形三边的垂直平分线仍然交于一点。这是因为,“三角形三边的垂直平分线交于一点”的证明过程只与垂直平分线的定义有关,而与垂直平分线的具体形式是无关的。即使证明过程用到了距离的定义,用到的也是新旧两种定义共有的一些基本性质。更有趣的是,这个点也是名副其实的“外心”,以它为中心可以作出这个三角形的外接圆来!也就是说,在出租车几何里,一般位置上的三个点也唯一地确定了一个圆。
不过,也有一些特殊的情况,三点不能确定一个圆。比方说,同时过 (0, 1) 、 (0, -1) 、 (1, 0) 的圆就有无穷多个。这是因为,(0, 1) 和 (1, 0) 的垂直平分线,以及(0, -1) 和 (1, 0) 的垂直平分线都不是“线”,有整块区域的点都满足到两端点的距离相等。因此这几条“垂直平分线”的交集不止一个点。
还有哪些欧氏几何的经典结论在出租车几何学中同样成立?出租车几何学中有什么漂亮而独特的结论?如何定义一些更加复杂的几何对象?它们在出租车几何学中又是什么样?大家不妨继续往下思考一下。
以上就是精品学习网推荐的生活中的数学智力题,希望对您有所帮助。
相关推荐:
标签:数学智力题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。