编辑:sx_mengxm
2015-08-07
生活中我们常常会玩抛硬币的游戏,那你知道其中的秘密吗?精品学习网欢迎大家阅读小学六年级数学智力题,为大家揭秘魔术师的硬币。
在一场魔术表演上,一位身着黑衣的魔术师走上舞台,将手中的十枚硬币零乱地撒在了桌面上,通过投影仪反射的图像,台下的观众可以清楚地从大屏幕上看到硬币中有的正面数字朝上,有的背面国徽图案朝上,从中看不出有什么规律。
接着魔术师说道,“我今天要给大家表演一个猜硬币的魔术,我要找一位现场观众来配合我”。 一位观众走到了台上,魔术师说,“你可以从这十枚硬币中任意选择其中的几个翻过来,为了方便起见,就按照你电话的末位号码来吧,麻烦你告诉我一下你的电话末位号码。” 观众回答道,“是3”。“那好,我现在背过身去,你任意选三个硬币把它们翻过来,然后在随意摆放一下这些硬币,把它们弄乱,然后再挑一个你喜欢的硬币把它盖住。”魔术师说道。观众按照魔术师的要求一一做了。
之后,魔术师转过身来,说“谢谢你的帮助,现在我把剩余的9个硬币收走”
“下面就是见证奇迹的时刻了!我可以用我的魔法看到盖子下面的硬币是正面朝上还是反面朝上”,最后魔术师成功地猜出了硬币是反面朝上。
接着魔术师又请了几位观众上台,结果他每一次都可以猜出硬币的正反面。
你对魔术师的“眼力”感到惊奇吗?或许你认为,这个盖子是特制的,硬币是特制的或者魔术师用了复杂的数学方法推算,但实际上这个魔术的秘密非常简单,使用的是小学的数学知识:奇数+/-奇数=偶数;偶数+/-偶数=偶数;奇数+/-偶数=奇数。
在整个魔术过程中,魔术师需要记住三个奇偶数
(1)硬币刚刚撒在桌面上时,暗暗记住了这十个硬币中有奇数个硬币还是有偶数个硬币正面朝上(例如图中有6个硬币正面朝上)
(2)观众说出的电话末位号码数字是奇数还是偶数(例如3是奇数),
(3)在最后收走的9个硬币中偷偷地数一下其中有多少个硬币朝上,是奇数还是偶数
当魔术师知道了观众给出的末位号码数字是奇数还是偶数后,如果这个数字是奇数,那么无论观众把原来硬币中正面的翻成背面的,还是把原来硬币中背面的翻成正面的,也无论各翻多少个,翻的硬币总数一定是奇数个,那么原来有奇数个正面朝上,最后一定是偶数个硬币正面朝上;(像上图中最后一定有奇数个正面硬币)反之,如果一共翻了偶数个硬币,那么原来有奇数个硬币正面朝上最后还是奇数个正面朝上,偶数个还是偶数个。根据这一计算,魔术师最后对比一下收走的9个硬币中的正面朝上的奇偶个数,就可以推断出在盖子下面的那个硬币是正面朝上还是反面朝上(图中最后有5个硬币正面朝上,已经是奇数,盖子下面的一定是背面朝上了)。
其实,数字奇偶性的简单原理不只可以作为在魔术中迷惑观众的把戏,在实际中也有很多用途。
例如在数字通信中,7个二进制数字像0010101可以表示一个数字、字母或者符号,这7个二进制数字可以看作是7个硬币,正面朝上就是1,反面朝上就是0。在传递这一串数字信息时,中途可能发生错误,在接受的一方有一些检查错误的方法,其中与这个魔术类似的奇偶校验位法就是其中一种最简单的方法。
在发射数据的一方传输这7个数据时(或者说7个硬币)时额外再加一个1或者0(1表示这7个数字中有奇数个1,相当于有奇数个硬币正面朝上,0表示有偶数个1),称为校验位,当接受方收到这8个二进制数据时,会检查一下前7个数位中是不是真的有奇数个1或者偶数个1,如果与校验位不符合,说明这一段信息在传输过程中出了错误,有硬币被“翻过去了”,例如1被噪声干扰成0,0被噪声干扰成1。
但是你可能想得到,这种查错方法是有缺陷的,像硬币魔术一样,奇数个硬币被翻过来,也就是7个数位中有奇数个出现错误,通过最后接收到的结果是可以检验出来的,偶数个数位错误就检验不出来了。不过,实际的通信系统需要有一定准确率,1个“硬币”被翻过来的可能性概率已经较低,2个“硬币”同时被翻过来的概率就更加低了,3个或以上几乎不可能,所以这种可以检查出1个数位错误的奇偶校验位法也是很有用的。
你可能不会想到,简单的奇数、偶数相加减的原理原来还可以这样有趣。.
以上就是精品学习网推荐的小学六年级数学智力题,欢迎大家阅读。
相关推荐:
标签:数学智力题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。