您当前所在位置:

人教版:商的变化规律 教学设计

2011-05-05

教学内容

小学数学(人教版)第七册P93-94。

教学目标

1.使学生初步理解并掌握商的变化规律。

2.会灵活运用商的变化规律进行解题。

能力目标

1.培养学生的观察、抽象概括能力以及思维的灵活性与敏捷性。

2.培养学生用数学语言表达数学结论的能力。

情感目标

培养学生善于观察、勤于思考、勇于探索的良好习惯。

教学重点

通过观察、比较、探讨,发现商的变化规律。

教学难点

运用商的变化规律正确解题。

教具准备

实物投影仪、多媒体课件。

教学过程:

教学设想

一、旧知 -铺垫

1.同学们,在第三单元我们已经学习了积的变化规律,现在请你

运用规律分别求出这两组算式的积。

2=80=

200×20=40×4=

40=20=

2.学生结合积的变化规律进行汇报。

二、探究-建构

1.探究商随除数(或被除数)变化而变化的规律。

同学们的知识掌握得真牢固,现在老师把求积变为求商,商

是多少呢?(学生回答,老师板书)

通过复习积的变化规律,使学生找到了新旧知识的内在联系,很好的利用已有知识和经验的迁移,为新知识点的学习做好铺垫,提高学习能力。

2=10080=20

200÷20=1040÷4=10

40=520=5

A.请同位从上往下观察,互相说说发现了什么?

B.各请一个学生到黑板汇报,教师根据汇报进行板书。

2=10080=20

200÷20=1040÷4=10

40=520=5

C.同位互说,教师根据学生的发现进行板书小结。

2=10080=20

200÷20=1040÷4=10

40=520=5

不变扩大几倍缩小几倍缩小几倍不变缩小几倍

D.学生齐读规律。质疑:如果我从下往上观察,又有什么规律呢?

E.师生小结,进行板书:

2=10080=20

200÷20=1040÷4=10

40=520=5

不变扩大几倍缩小几倍缩小几倍不变缩小几倍

(扩大)(扩大)

F.现在,请运用所学知识,解决书本93页的例5。

放手让学生在学习积的变化规律的基础上探索商随除数(或被除数)变化而变化的规律,给学生自主探索和交流的机会,体现了新的数学理念。

巩固新知,

学以致用。

学生独立完成,提问。

H.刚才,通过大家的观察,发现了被除数不变或除数不变,现在

我要把它们都发生变化,商会怎样呢?(指着表格说)这节课

我们继续学习“商的变化规律”。(板书课题:商的变化规律)

2.探究商不变的规律。

A.完成表格中的商。

被除数

14

140

280

560

5600

除数

2

20

40

80

800

7

7

7

7

7

B.请带着下面问题仔细观察表格,独立思考:(课件出示)[

*表中的什么数有变化?什么数没有变化?

*任选两栏算式比较,被除数、除数和商的变化有什么规律?

C.四人小组讨论,教师巡视指导。

D.小组1上台汇报:(预设汇报情况)

生1:我发现了表中的被除数和除数有变化,商没有变化。

生2:我选择第2栏与第1栏比较,被除数和除数同时扩大10

倍,商没有变化。

生3:我选择第3栏与第1栏比较,被除数和除数同时扩大20

倍,商没有变化。

生4:我们小组最后得出:被除数和除数同时扩大(10、20)

倍,商不变。

师:其他小组还有补充吗?

E.小结:刚才,这个小组通过比较(画)这两组数,发现了被除

数和除数同时扩大(写×10、×20),商不变,由此,我们可

以得出“被除数和除数同时扩大相同的倍数,商不变。”[板书]

利用小组合作学习,让学生动脑、动口、动手,相互交流,既促使学生自己主动解决学习中的问题,而提高学习能力,又利于培养自主探索的能力、合作学习的意识和习惯。

F.其他小组还有发现吗?请小组2汇报。(师同时板书)

生1:我发现了表中的被除数和除数有变化,商没有变化。

生2:我选择第4栏与第5栏比较,被除数和除数同时缩小10

倍,商没有变化。

生3:我选择第3栏与第4栏比较,被除数和除数同时缩小2

倍,商没有变化。

生4:我们小组最后得出:被除数和除数同时缩小(10、2)

倍,商不变。

G.师:也就是说被除数和除数同时缩小相同的倍数,商不变。

(板书:扩大缩小)。现在,不管从左往右比较,还是

从右往左比较,谁能用一句话总结出被除数、除数和商的变

化规律呢?

H.学生小结,教师完善板书,得出商的变化规律。

I.师生齐读规律,找出重点字词:同时、相同,标出并理解。

J.学生对照表格,选择其中的两栏数字自行说出商的变化规律。

3.质疑问难:0倍可以吗?(尝试让学生提,提不出由教师提)

三、应用-提升

1.书本94页第4题。

(1)书上独立完成。

(2)交流答案,师生互评。

(3)同位各选一组说出商的变化规律。

2.按要求编题。

刚才同学们运用今天所学的知识完成了练习,现在请你模仿

这个环节目的是让学生充分经历学习的过程,从研究具体问题--归纳发现的规律--解释说明规律,使学习体会了知识的形成过程。

94页第4题,自己试编一组有规律的式子。(每组编3小题

扩大相同的倍数缩小相同的倍数

如:20÷2=103000÷200=15

200÷20=10300÷20=15

2000÷200=1030÷2=15

(2)生展示答案。

生1:这是我编的第1组题,被除数和除数同时扩大相同的倍数,商不变。[

生2:......

3.判断题。

(1)被除数不变,除数扩大3倍,商也扩大3倍。()

(2)30÷6=(30×5)÷(6×4)()

(3)312÷12=26,要使“26”不变,如果“12”扩大2倍,被除数是624。()

4.拓展题。

小货车从A地到B地的路程是300千米,速度是50千米/小时,而特快列车从C地到B地路程有900千米,列车的速度是150千米/小时,如果两车同时出发,请问是小货车还是特快列车先到B地?

师:因为300和50同时扩大3倍刚好是900和150,根据商不变的规律,货车和火车是同时到B地。

练习的设计充分体现了层次性、开放性、灵活性,通过让学生进行不同类型的练习,既巩固了商的变化规律,又拓展了学生的思维空间,使不同的学生得到不同的发展。

5.开放题。

请在下面的圆圈内填上适当的运算符号,在正方框内填上适当的数字:

48÷12=(48○□)÷(12○□)

四、总结-延伸

1.通过这节课的学习,你学会了什么?你觉得自己表现如何?

2.运用商的变化规律,你还可以解决什么问题?

让学生自我评价、自我赏识是新课标发展性评价的重要内容,有利于增强学生自信、树立学习信心。

最后提出问题,引发学生思考,培养学生“学以致用”的意识,体现了商的变化规律在现实生活中的重要作用。

板书设计

商的变化规律

2=10080=20

200÷20=1040÷4=10

40=520=5

不变扩大几倍缩小几倍缩小几倍不变缩小几倍