编辑:sx_haoy
2014-01-07
精品学习网中考频道小编最新搜集了中考学习的相关内容,同学们快来学习“潮州中考数学二次函数专题复习”!
考点1:二次函数的图象和性质
一、考点讲解:
1.二次函数的定义:形如y=ax2+bx+c (a≠0,a,b,c为常数)的函数为二次函数.
2.二次函数的图象及性质:
⑴ 二次函数y=ax2 (a≠0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a>0时,抛物线开口向上,顶点是最低点;当a<0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。
注意:分析二次函数增减性时,一定要以对称轴为分界线。首先要看所要分析的点是否是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。
3.图象的平移:将二次函数y=ax2 (a≠0)的图象进行平移,可得到y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
⑴ 将y=ax2的图象向上(c>0)或向下(c< 0)平移|c|个单位,即可得到y=ax2+c的图象.其顶点是(0,c),形状、对称轴、开口方向与抛物线y=ax2相同.
⑵ 将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h)2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.
⑶ 将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2 +k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.
注意:二次函数y=ax2 与y=-ax2 的图像关于x轴对称。平移的简记口诀是“上加下减,左加右减”。
一、 经典考题剖析:
【考题1】.抛物线y=-4(x+2)2+5的对称轴是______
解:x=-2 点拨:抛物线y=a(x-h)2+k的对称轴为x=h.
【考题2】函数y= x2-4的图象与y 轴的交点坐标是( )
A.(2,0) B.(-2,0)
C.(0,4) D.(0,-4)
解:D 点拨:函数y= x2-4的图象与 y轴的交点的 横坐标为0,x=0时,y=-4,故选D.
同学们,精品学习网编辑的中考辅导知识——潮州中考数学二次函数专题复习就到这里了,祝同学们好好学习,天天向上!
其他中考生都在看:
标签:潮州中考数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。