编辑:sx_jixia
2016-12-14
摘要内容 为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了中考数学大题题型剖析。
操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q。探究:设A、P两点间的距离为x。
(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由。
分析:第(1)小题是带有几何图形的探索性试题。不妨用尺量一下。可知P Q=PB。一旦把PQ=PB这个结论确定下来,就可以用三角形全等的方法证明这个结论。
第(2)小题,由第(1)小题的结论可推得AM=MP=QN=DN=x,BM=PN=CN=1-√2x。然后分别计算出△PBC和△CPQ的面积,四边形P BCQ的面积就等于这两个三角形的面积和,可得y=x2-√2)。
第(3)小题又是一道带有几何图形的探索性试题。如果△PCQ成为等腰三角形的话,P点也只能在某些位置时,才能使△PCQ成为等腰三角形,或者无法使△PCQ成为等腰三角形。无论“是”或“不是”要通过计算才能确定。通过计算可知,当x=0(即点P与点A重合)或x=1时,△PCQ是等腰三角形。
2001年的最后一题:已知在梯形A BCD中,AD∥BC,AD
①求证:△ABP∽△DPC;②求AP的长。
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q,那么①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;②当CE=1时,写出AP的长(不必写出解题过程)。
希望为大家提供的中考数学大题题型剖析的内容,能够对大家有用,更多相关内容,请及时关注!
相关推荐
标签:惠州中考数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。