您当前所在位置:首页 > 中考 > 广东中考 > 云浮中考 > 云浮中考数学

云浮中考数学复习提纲参考

编辑:

2016-08-09

2、运算

(1)整式的加减:

合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则:括号前面是“ ”号,把括号和它前面的“ ”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“ ”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式的乘除:

幂的运算法则:其中m、n都是正整数

同底数幂相乘: ;同底数幂相除: ;幂的乘方:

积的乘方: 。

单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。

多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。

乘法公式: 平方差公式: ;

完全平方公式: ,

三、因式分解

1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

2、常用的因式分解方法:

(1)提取公因式法:

(2)运用公式法:

平方差公式: ;完全平方公式:

(3)十字相乘法:

(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若 的两个根是 、 ,则有:

3、因式分解的一般步骤:

(1)如果多项式的各项有公因式,那么先提公因式;

(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;

(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

四、分式

1、分式定义:形如 的式子叫分式,其中A、B是整式,且B中含有字母。

(1)分式无意义:B=0时,分式无意义; B≠0时,分式有意义。

(2)分式的值为0:A=0,B≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质:

(1) ;(2)

(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:

(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

五、二次根式

1、二次根式的概念:式子 叫做二次根式。

(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化:把分母中的根号化去叫做分母有理化。

(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有: 与 ; 与 )

2、二次根式的性质:

(1) ; (2) ;

(3) (a≥0,b≥0); (4)

3、运算:

(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。

(2)二次根式的乘法: (a≥0,b≥0)。

(3)二次根式的除法:

二次根式运算的最终结果如果是根式,要化成最简二次根式。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。