编辑:sx_yangmj
2016-05-20
此时2016信阳中考数学模拟就是一个考场,而考生们便是一个个战士,战士们,战斗吧!
一.选择题(本大题共8小题,每小题3分,共24分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. |﹣8|的相反数是 ( ▲ )
A.﹣8 B. 8 C. D.
2.下列计算中,正确的是 ( ▲ )
A. B. C. D.
3.如下图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是 ( ▲ )
A. B. C. D.
4.下列说法正确的是 ( ▲ )
A.要了解人们对“低碳生活”的了解程度,宜采用普查方式
B.随机事件的概率为50%,必然事件的概率为100%
C.一组数据3、4、5、5、6、7的众数和中位数都是5
D.若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定
5.若一个圆锥的侧面展开图是一个半径为10cm,圆心角为252°的扇形,则该圆锥的底面半径为 ( ▲ )
A.6cm B.7cm C.8cm D.10cm
6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于( ▲ )
A.55° B.45° C.35° D.65°
7.若关于x、y的二元一次方程组 的解满足x+y<2,则a的取值范围是( ▲ )
A.a>2 B.a<2 C.a>4 D.a<4
第3题 第6题 第8题
8.已知二次函数y=ax2+bx+c的图象如图所示,下列说法①a>0;②b2﹣4ac>0;③4a+2b+c>0;④c<0;⑤b>0.其中正确的有 ( ▲ )
A.2个 B.3个 C.4个 D.5个
二.填空题(本大题共10小题,每小题3分,共30分.)
9.若分式 的值为0,则x= ▲ .
10.把多项式2x2﹣8分解因式得: ▲ .
11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是 ▲ .
12.某公司2月份的利润为160万元,4月份的利润250万元,则平均每月的增长率为 ▲ .
13.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的表达式为 ▲ .
14.如图,点E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一条弦.则sin∠OBE=
▲ .
第13题 第14题 第15题
15.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为 ▲ .
16.如下一组数: ,﹣ , ,﹣ ,…,请用你发现的规律,猜想第2016个数为 ▲ .
17.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;
③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有 ▲ .(在横线上填写正确的序号)
第17题 第18题
18.如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,On和点E4,E5,…,En.则OnEn=
▲ AC.(用含n的代数式表示)
三.解答题(本大题共10小题,共96分.解答时应写出文字说明、推理过程或演算步骤)
19.(8分)计算:﹣14+(2016﹣π)0﹣(﹣ )﹣1+|1﹣ |﹣2sin60°.
20.(8分)先化简,再求值:(x﹣1)÷( ﹣1),其中x为方程x2+3x+2=0的根.
21.(8分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.
(1)现随机转动转盘一次,停止后,指针指向2的概率为 ▲ .
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.
游戏规则:随机转动转盘两次,停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.
22.(8分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 ▲ .名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
23.(10分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米, =1.732).
24.(10分) 如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若AE=6,CE=2 ,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)
25.(10分)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.
(1)求面料和里料的单价;
(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.
①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)
②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.
26.(10分)探索研究:已知:△ABC和△CDE都是等边三角形.
(1)如图1,若点A、C、E在一条直线上时,我们可以得到结论:线段AD与BE的数量关系为: ▲ ,线段AD与BE所成的锐角度数为 ▲ °;
(2)如图2,当点A、C、E不在一条直线上时,请证明(1)中的结论仍然成立;
灵活运用:
如图3,某广场是一个四边形区域ABCD,现测得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,试求水池两旁B、D两点之间的距离.
27.(12分) 在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1.
②请直接写出AC1 与BD1的位置关系.
(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.
(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1.直接写出k的值和AC12+(kDD1)2的值.
28.(12分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并求出相对应的点E坐标;若不存在,请说明理由.
2016信阳中考数学模拟是一个考场,考生们是战士,考场如战场,一不小心,就会被淘汰出局。冲锋吧,胜利就在前方。
标签:信阳中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。