您当前所在位置:首页 > 中考 > 河南中考 > 周口中考 > 周口中考试题

2015河南周口中考数学考前必做专题试题:全等三角形

编辑:

2015-12-21

4. (2014•益阳,第7题,4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件 是(  )

(第1题图)

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

考点: 平行四边形的性质;全等三角形的判定.

分析: 利用平行四边形的性质以及全等三角形的判定分别分得出即可.

解答: 解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;

B、当BE=FD,

∵平行四边形ABCD中,

∴AB=CD,∠ABE=∠CDF,

在△ABE和△CDF中

∴△ABE≌△CDF(SAS),故此选项错误;

C、当BF=ED,

∴BE=DF,

∵平行四边形ABCD中,

∴AB=CD,∠ABE=∠CDF,

在△ABE和△CDF中

∴△ABE≌△CDF(SAS),故此选项错误;

D、当∠1=∠2,

∵平行四边形ABCD中,

∴AB=CD,∠ABE=∠CDF,

在△ABE和△CDF中

∴△ABE≌△CDF(ASA),故此选项错误;

故选:A.

点评: 此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.

5. (2014年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是(  )

(第2题图)

A.( ,3)、(﹣ ,4) B. ( ,3)、(﹣ ,4)

C.( , )、(﹣ ,4) D.( , )、(﹣ ,4)

考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。

分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.

解答:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,

∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,

在△ACF和△OBE中, ,∴△CAF≌△BOE(AAS),

∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,

∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴ ,即 ,

∴OE= ,即点B( ,3),∴AF=OE= ,

∴点C的横坐标为:﹣(2﹣ )=﹣ ,∴点D(﹣ ,4).故选B.

点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

6.(2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=(  )

(第3题图)

A. B. C. D. ﹣2

考点: 全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理

专题: 计算题.

分析: 连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,

连接MN,过M点作ME⊥ON于E,则△MNA是等边三角形求得MN=2,设NF=x,表示出CF,根据勾股定理即可求得MF,然后求得tan∠MCN.

解答: 解:∵AB=AD=6,AM:MB=AN:ND=1:2,

∴AM=AN=2,BM=DN=4,

连接MN,连接AC,

∵AB⊥BC,AD⊥CD,∠BAD=60°

在Rt△ABC与Rt△ADC中,

∴Rt△ABC≌Rt△ADC(LH)

∴∠BAC=∠DAC= ∠BAD=30°,MC=NC,

∴BC= AC,

∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,

3BC2=AB2,

∴BC=2 ,

在Rt△BMC中,CM= = =2 .

∵AN=AM,∠MAN=60°,

∴△MAN是等边三角形,

∴MN=AM=AN=2,

过M点作ME⊥ON于E,设NE=x,则CE=2 ﹣x,

∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2 )2﹣(2 ﹣x)2,

解得:x= ,

∴EC=2 ﹣ = ,

∴ME= = ,

∴tan∠MCN= =

故选A.

点评: 此题考查了全等三角形的判定与性质,勾股定理以及解直角三角函数,熟练掌握全等三角形的判定与性质是解本题的关键.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。