编辑:
2015-12-21
考点: 锐角三角函数的定义;勾股定理.
分析: 首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.
解答: 解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB= .
∴cosA= ,
故选:D.
点评: 本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.
5.(2014•广州,第3题3分)如图1,在边长为1的小正方形组成的网格中, 的三个顶点均在格点上,则 ( ).
(A) (B) (C) (D)
【考点】正切的定义.
【分析】 .
【答案】 D
6.(2014•浙江金华,第6题4分)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为 ,则t的值是【 】
A.1 B.1.5 C.2 D.3
【答案】C.
【解析】
7.(2014•滨州,第11题3分)在Rt△ACB中,∠C=90°,AB=10,sinA= ,cosA= ,tanA= ,则BC的长为( )
A. 6 B. 7.5 C. 8 D. 12.5
考点: 解直角三角形
分析: 根据三角函数的定义来解决,由sinA= = ,得到BC= = .
解答: 解:∵∠C=90°AB=10,
∴sinA= ,
∴BC=AB× =10× =6.
故选A.
点评: 本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA= ,cosA= ,tanA= .
8.(2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )
A. 3 B. 4 C. 5 D. 6
(第1题图)
标签:驻马店中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。