您当前所在位置:首页 > 中考 > 青海中考 > 玉树中考 > 玉树中考数学

玉树中考数学知识点:相遇问题

编辑:sx_chenj

2017-11-16

兴趣可以使人集中注意,如果要让学生感兴趣,教师就要饱含情感。精品学习网编辑了玉树中考数学知识点:相遇问题,欢迎阅读!

考点1.1、实数的概念及分类

1、 实数的分类

有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373...,,.

无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0).

实数:有理数和无理数统称为实数.

2、无理数

在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:

(1)开方开不尽的数,如等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如0.1010010001...等;

(4)某些三角函数,如sin60o等

注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.

3、非负数:正实数与零的统称。(表为:x≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

5、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数.

6、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.

☆(3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,.

注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

7、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

即(1)实数(≠0)的倒数是.

(2)和互为倒数。

(3)注意0没有倒数.

8、有效数字

一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

9、科学记数法

把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。

(1)确定:是只有一位整数数位的数.

(2)确定n:当原数≥1时,等于原数的整数位数减1;;当原数<1时,是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零)。

例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.

(3).近似值的精确度:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位

(4)按精确度或有效数字取近似值,一定要与科学计数法有机结合起来.

10、实数大小的比较

知识1、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

知识2、实数大小比较的几种常用方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a、b是实数,

(3)求商比较法:设a、b是两正实数,

(4)绝对值比较法:设a、b是两负实数,则。

(5)平方法:设a、b是两负实数,则。

11、实数的运算 (做题的基础,分值相当大)

1、加法交换律

2、加法结合律

3、乘法交换律

4、乘法结合律

5、乘法对加法的分配律

6、实数的运算顺序

1. 先算乘方开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

2. (同级运算)从"左"到"右"(如5÷×5);(有括号时)由"小"到"中"到"大"。

12、有理数的运算:

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

考点1.2、实数与二次根式

1、平方根

如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做""。

2、算术平方根

正数a的正的平方根叫做a的算术平方根,记作""。

正数和零的算术平方根都只有一个,零的算术平方根是零。

(0)

;注意的双重非负性:

-(<0) 0

注意:算术平方根与绝对值

① 联系:都是非负数,=│a│

②区别:│a│中,a为一切实数;中,a为非负数。

3、算术平方根的估算方法:两端逼近法.

例如:估算.(精确到0.1)∵∴.又∵,

又∵6更靠近5.76,∴  4、立方根

如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:,这说明三次根号内的负号可以移到根号外面。

二次根式

5、二次根式

式子叫做二次根式,二次根式必须满足:含有二次根号"";被开方数a必须是非负数。

6、最简二次根式

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

7、同类二次根式

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

8、二次根式的性质

(1)

(2)

(3)

(4) 注:

9、根式运算法则:

⑴加法法则(合并同类二次根式);

⑵乘、除法法则;

⑶分母有理化:A.;B.;C..

10.指数

⑴ (-幂,乘方运算)

① a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)

⑵零指数:=1(a≠0)

负整指数:=1/(a≠0,p是正整数)

小编为大家整理的玉树中考数学知识点:相遇问题就先到这里,希望大家学习的时候每天都有进步。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。