编辑:sx_zhangh
2014-01-06
对于初中生来说中考就是一个重要的转折点。精品学习网为大家提供“2012年山东聊城市中考数学解答题解析三”,希望对大家有所帮助:
2012年山东聊城市中考数学解答题解析三
23.(2012?聊城)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
考点:待定系数法求一次函数解析式。
专题:计算题。
分析:(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;
(2)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.
解答:解:(1)设直线AB的解析式为y=kx+b,
∵直线AB过点A(1,0)、点B(0,﹣2),
∴,
解得,
∴直线AB的解析式为y=2x﹣2.
(2)设点C的坐标为(x,y),
∵S△BOC=2,
∴?2?x=2,
解得x=2,
∴y=2×2﹣2=2,
∴点C的坐标是(2,2).
点评:本题考查了待定系数法求函数解析式,解答此题不仅要熟悉函数图象上点的坐标特征,还要熟悉三角形的面积公式.
24.(2012?聊城)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.
(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;
(2)当DP为⊙O的切线时,求线段DP的长.
考点:切线的判定;勾股定理;垂径定理;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质。
专题:几何综合题。
分析:(1)根据当点P是的中点时,得出=,得出PA是○O的直径,再利用DP∥BC,得出DP⊥PA,问题得证;
(2)利用切线的性质,由勾股定理得出半径长,进而得出△ABE∽△ADP,即可得出DP的长.
解答:解:(1)当点P是的中点时,DP是⊙O的切线.理由如下:
∵AB=AC,
∴=,
又∵=,
∴=,
∴PA是○O的直径,
∵=,
∴∠1=∠2,
又AB=AC,
∴PA⊥BC,
又∵DP∥BC,
∴DP⊥PA,
∴DP是⊙O的切线.
(2)连接OB,设PA交BC于点E.
由垂径定理,得BE=BC=6,
在Rt△ABE中,由勾股定理,得:
AE===8,
设⊙O的半径为r,则OE=8﹣r,
在Rt△OBE中,由勾股定理,得:
r2=62+(8﹣r)2,
解得r=,
∵DP∥BC,∴∠ABE=∠D,
又∵∠1=∠1,
∴△ABE∽△ADP,
∴=,即=,
解得:DP=.
点评:此题主要考查了切线的判定与性质以及勾股定理和相似三角形的判定与性质,根据已知得出△ABE∽△ADP是解题关键.
通过阅读“2012年山东聊城市中考数学解答题解析三”这篇文章,小编相信大家对聊城中考试题又有了更进一步的了解,希望大家考出好的成绩!
相关推荐:
标签:聊城中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。