编辑:sx_zhangh
2014-01-06
中考是初中升高中的一个重要阶段,精品学习网精心为大家搜集整理了“山东聊城2013中考数学解答题解析五”,希望对大家的考试有所帮助!
山东聊城2013中考数学解答题解析五
24.(10分)(2013?聊城)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:
(1)四边形FADC是菱形;
(2)FC是⊙O的切线.
考点:切线的判定与性质;菱形的判定.3338333
分析:(1)首先连接OC,由垂径定理,可求得CE的长,又由勾股定理,可求得半径OC的长,然后由勾股定理求得AD的长,即可得AD=CD,易证得四边形FADC是平行四边形,继而证得四边形FADC是菱形;
(2)首先连接OF,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.
解答:证明:(1)连接OC,
∵AB是⊙O的直径,CD⊥AB,
∴CE=DE=CD=×4=2,
设OC=x,
∵BE=2,
∴OE=x﹣2,
在Rt△OCE中,OC2=OE2+CE2,
∴x2=(x﹣2)2+(2)2,
解得:x=4,
∴OA=OC=4,OE=2,
∴AE=6,
在Rt△AED中,AD==4,
∴AD=CD,
∵AF是⊙O切线,
∴AF⊥AB,
∵CD⊥AB,
∴AF∥CD,
∵CF∥AD,
∴四边形FADC是平行四边形,
∴?FADC是菱形;
(2)连接OF,
∵四边形FADC是菱形,
∴FA=FC,
在△AFO和△CFO中,
,
∴△AFO≌△CFO(SSS),
∴∠FCO=∠FAO=90°,
即OC⊥FC,
∵点C在⊙O上,
∴FC是⊙O的切线.
点评:此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
经过精心的整理,有关“山东聊城2013中考数学解答题解析五”的内容已经呈现给大家,祝大家取得好成绩!
相关推荐:
标签:聊城中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。