您当前所在位置:首页 > 中考 > 陕西中考 > 延安中考 > 延安中考试题

2016年陕西延安中考数学考前必做专题试题

编辑:

2016-01-27

5. (2014•青岛,第13题3分)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为 2  .

考点: 轴对称-最短路线问题;等腰梯形的性质.

分析: 要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.

解答: 解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,

∴B点关于EF的对称点C点,

∴AC即为PA+PB的最小值,

∵∠BCD=60°,对角线AC平分∠BCD,

∴∠ABC=60°,∠BCA=30°,

∴∠BAC=90°,

∵AD=2,

∴PA+PB的最小值=AB•tan60°= .

故答案为:2 .

点评: 考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.

6. (2014•攀枝花,第16题4分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是   .

考点: 相似三角形的判定与性质;等腰三角形的判定与性质;梯形.

分析: 首先延长BA,CD交于点F,易证得△BEF≌△BEC,则可得DF:FC=1:4,又由△ADF∽△BCF,根据相似三角形的面积比等于相似比的平方,可求得△ADF的面积,继而求得答案.

解答: 解:延长BA,CD交于点F,

∵BE平分∠ABC,

∴∠EBF=∠EBC,

∵BE⊥CD,

∴∠BEF=∠BEC=90°,

在△BEF和△BEC中,

∴△BEF≌△BEC(ASA),

∴EC=EF,S△BEF=S△BEC=2,

∴S△BCF=S△BEF+S△BEC=4,

∵CE:ED=2:1

∴DF:FC=1:4,

∵AD∥BC,

∴△ADF∽△BCF,

∴ =( )2= ,

∴S△ADF= ×4= ,

∴S四边形ABCD=S△BEF﹣S△ADF=2﹣ = .

故答案为: .

点评: 此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。