编辑:sx_gaomj
2012-05-16
精品学习网中考频道提供大量中考资料,在第一时间更新中考资讯。以下是2012中考数学压轴题及答案40例:
28.如图,Rt△ABC的顶点坐标分别为A(0, ),B(- , ),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0, ),以点D为顶点、y轴为对称轴的抛物线过点B.
(1)求该抛物线的解析式;
(2)将△ABC沿AC折叠后得到点B的对应点B′,求证:四边形AOCB′是矩形,并判断点B′是否在(1)的抛物线上;
(3)延长BA交抛物线于点E,在线段BE上取一点P,过P点作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标,若不存在,说明理由.
解:(1)∵抛物线的顶点为D(0, )
∴可设抛物线的解析式为y=ax 2+ .············································ 1分
∵B(- , )在抛物线上
∴a(- )2+ = ,∴a= .····················· 3分
∴抛物线的解析式为y= x 2+ .··················· 5分
(2)∵B(- , ),C(1,0)
∴BC= = 又B′C=BC,OA= ,∴B′C=OA.············································· 6分
∵AC= = =2
∴AB= = =1
又AB′=AB,OC=1,∴AB′=OC.················································ 7分
∴四边形AOCB′是矩形.··································································· 8分
∵B′C= ,OC=1
∴点B′ 的坐标为(1, )····························································· 9分
将x=1代入y= x 2+ 得y= ∴点B′ 在抛物线上.······································································ 10分
(3)存在····································································································· 11分
理由如下:
设直线AB的解析式为y=kx+b,则
解得 ∴直线AB的解析式为y= ···················································· 12分
∵P、F分别在直线AB和抛物线上,且PF∥AD
∴设P(m, ),F(m, m 2+ )
∴PF=( )-( m 2+ )=- m 2+ + AD= = 若四边形PADF是平行四边形,则有PF=AD.
即- m 2+ + = 解得m1=0(不合题意,舍去),m2= .····································· 13分
当m= 时, = × + = .
∴存在点P( , ),使四边形PADF是平行四边形.············· 14分
29.如图1,平移抛物线F1:y=x 2后得到抛物线F2.已知抛物线F2经过抛物线F1的顶点M和点A(2,0),且对称轴与抛物线F1交于点B,设抛物线F2的顶点为N.
(1)探究四边形ABMN的形状及面积(直接写出结论);
(2)若将已知条件中的“抛物线F1:y=x 2”改为“抛物线F1:y=ax 2”(如图2),“点A(2,0)”改为“点A(m,0)”,其它条件不变,探究四边形ABMN的形状及其面积,并说明理由;
(3)若将已知条件中的“抛物线F1:y=x 2”改为“抛物线F1:y=ax 2+c”(如图3),“点A(2,0)”改为“点A(m,c)”其它条件不变,求直线AB与 轴的交点C的坐标(直接写出结论).
解:(1)四边形ABMN是正方形,其面积为2.····················································· 1分
(2)四边形ABMN是菱形.当m>0时,四边形ABMN的面积为 ;当 <0时,四边形ABMN的面积为- .······························································································· 2分
(说明:如果没有说理过程,探究的结论正确的得2分)
理由如下:
∵平移抛物线F1后得到抛物线F2,且抛物线F2经过原点O.
∴设抛物线F2的解析式为y=ax 2+bx.
∵抛物线F2经过点A(m,0),∴am 2+bm=0.
由题意可知m≠0,∴b=-am.
∴抛物线F2的解析式为y=ax 2-amx.·············································· 3分
∴y=a(x- )2- ∴抛物线F2的对称轴为直线x= ,顶点N( ,- ).········ 4分
∵抛物线F2的对称轴与抛物线F1的交点为B,∴点B的横坐标为 .
∵点B在抛物线F1:y=ax 2上
∴yB=a( )2= ············································································ 5分
设抛物线F2的对称轴与x轴交于点P,如图1.
∵a>0,∴BP= .
∵顶点N( ,- ),∴NP=|- |= .
∴BP=NP.······························································ 6分
∵抛物线是轴对称图形,∴OP=AP.
∴四边形ABMN是平行四边形.····························· 7分
∵BN是抛物线F2的对称轴,∴BN⊥OA.
∴四边形ABMN是菱形.····································································· 8分
∵BN=BP+NP,∴BN= .
∵四边形ABMN的面积为 ×OA·BN= ×|m|× ∴当m>0时,四边形ABMN的面积为 ×m× = .·········· 9分
当m<0时,四边形ABMN的面积为 ×(-m)× =- . 10分
(3)点C的坐标为(0, +c)(参考图2).
30.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.
解:(1)由题意,可设抛物线的解析式为y=a(x-2)2+1.
∵抛物线经过原点,∴a(0-2)2+1=0,∴a=- .
∴抛物线的解析式为y=- (x-2)2+1=- x 2+x.···················· 3分
(2)△AOB和所求△MOB同底不等高,若S△MOB =3S△AOB ,则△MOB的高是△AOB高的3倍,
即M点的纵坐标是-3.······································································· 5分
∴- x 2+x=-3,整理得x 2-4x-12=0,解得x1=6,x2=-2.
∴满足条件的点有两个:M1(6,-3),M2(-2,-3)························ 7分
(3)不存在.································································································ 8分
理由如下:
由抛物线的对称性,知AO=AB,∠AOB=∠ABO.
若△OBN∽△OAB,则∠BON=∠BOA=∠BNO.
设ON交抛物线的对称轴于A′ 点,则A′ (2,-1).
∴直线ON的解析式为y=- x.
由 x=- x 2+x,得x1=0,x2=6.
∴N(6,-3).
过点N作NC⊥x轴于C.
在Rt△BCN中,BC=6-4=2,NC=3
∴NB= = .
∵OB=4,∴NB≠OB,∴∠BON≠∠BNO,∴△OBN与△OAB不相似.
同理,在对称轴左边的抛物线上也不存在符合条件的 点.
∴在x轴下方的抛物线上不存在点N,使△OBN与△OAB相似.····· 10分
31.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(1)如图1,过点B作BM⊥x轴于M.
由旋转性质知OB=OA=2.
∵∠AOB=120°,∴∠BOM=60°.
∴OM=OB·cos60°=2× =1,BM=OB·sin60°=2× = .
∴点B的坐标为(1, ).······································· 1分
(2)设经过A、O、B三点的抛物线的解析式为y=ax 2+bx+c
∵抛物线过原点,∴c=0.
∴ 解得 ∴所求抛物线的解析式为y= x 2+ x.·································· 3分
(3)存在.································································································· 4分
如图2,连接AB,交抛物线的对称轴于点C,连接OC.
∵OB的长为定值,∴要使△BOC的周长最小,必须BC+OC的长最小.
∵点A与点O关于抛物线的对称轴对称,∴OC=AC.
∴BC+OC=BC+AC=AB.
由“两点之间,线段最短”的原理可知:此时BC+OC最小,点C的位置即为所求.
设直线AB的解析式为y=kx+m,将A(-2,0),B(1, )代入,得
解得 ∴直线AB的解析式为y= x+ .
抛物线的对称轴为直线x= =-1,即x=-1.
将x=-1代入直线AB的解析式,得y= ×(-1)+ = .
∴点C的坐标为(-1, ).···························································· 6分
(4)△PAB有最大面积.··········································································· 7分
如图3,过点P作y轴的平行线交AB于点D.
∵S△PAB =S△PAD+S△PBD
= (yD-yP)(xB-xA)
= [( x+ )-( x 2+ x)](1+2)
=- x 2- x+ =- (x+ )2+ ∴当x=- 时,△PAB的面积有最大值,最大值为 .············· 8分
此时yP= ×(- )2+ ×(- )=- .
∴此时P点的坐标为(- ,- ).················································ 9分
相关链接:
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。