编辑:sx_gaomj
2012-05-16
精品学习网中考频道提供大量中考资料,在第一时间更新中考资讯。以下是2012中考数学压轴题及答案40例:
21.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax 2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
① 过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
② 连接EQ,在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.
解:(1)点A的坐标为(4,8).·········································································· 1分
将A(4,8)、C(8,0)两点坐标分别代入y=ax 2+bx,
得 解得a=- ,b=4.
∴抛物线的解析式为y=- x 2+4x.················································ 3分
(2)①在Rt△APE和Rt△ABC中,tan∠PAE= = ,即 = = .
∴PE= AP= t,PB=8-t.
∴点E的坐标为(4+ t,8-t).2
∴点G的纵坐标为- (4+ t)2+4(4+ t)=- t 2+8.············· 5分
∴EG=- t 2+8-(8-t)=- t 2+t
∵- <0,∴当 =4时,线段EG最长为2.···································· 7分
②共有三个时刻.················································································· 8分
t1= ,t2= ,t3=40- .··················································· 11分
22.如图,抛物线y=-x 2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.
解:(1)A(-1,0),B(3,0),C(0,3).················································· 2分
抛物线的对称轴是:x=1.·································································· 3分
(2)①设直线BC的解析式为:y=kx+b.
将B(3,0),C(0,3)分别代入得:
解得 ∴直线BC的解析式为y=-x+3.
当x=1时,y=-1+3=2,∴E(1,2).
当x=m时,y=-m+3,∴P(m,-m+3).······························· 4分
将x=1代入y=-x 2+2x+3,得y=4,∴D(1,4).
将x=m代入y=-x 2+2x+3,得y=-m 2+2m+3.
∴F(m,-m 2+2m+3).································································ 5分
∴线段DE=4-2=2,线段PF=-m 2+2m+3-(-m+3)=-m 2+3m 6分
∵PF∥DE,∴当PF=DE时,四边形PEDF为平行四边形.
由-m 2+3m=2,解得:m1=2,m2=1(不合题意,舍去).
∴当m=2时,四边形PEDF为平行四边形.······································ 7分
②设直线PF与x轴交于点M.
由B(3,0),O(0,0),可得:OB=OM+MB=3.
则S=S△BPF +S△CPF··············································································· 8分
= PF·BM+ PF·OM
= PF·OB
= (-m 2+3m)×3
=- m 2+ m(0≤m≤3)
即S与m的函数关系式为:S=- m 2+ m(0≤m≤3).··········· 9分
23.如图,在矩形OABC中,已知A、C两点的坐标分别为A(4,0)、C(0,2),D为OA的中点.设点P是∠AOC平分线上的一个动点(不与点O重合).
(1)试证明:无论点P运动到何处,PC总与PD相等;
(2)当点P运动到与点B的距离最小时,试确定过O、P、D三点的抛物线的解析式;
(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,△PDE的周长最小?求出此时点P的坐标和△PDE的周长;
(4)设点N是矩形OABC的对称中心,是否存在点P,使∠CPN=90°?若存在,请直接写出点P的坐标.
解:(1)∵点D是OA的中点,∴OD=2,∴OD=OC.
又∵OP是∠COD的角平分线,∴∠POC=∠POD=45°.
∴△POC≌∠POD,∴PC=PD;·························································· 3分
(2)如图,过点B作∠AOC的平分线的垂线,垂足为P,点P即为所求.
易知点F的坐标为(2,2),故BF=2,作PM⊥BF.
∵△PBF是等腰直角三角形,∴PM= BF=1.
∴点P的坐标为(3,3).
∵抛物线经过原点
∴可设抛物线的解析式为y=ax 2+bx.
又∵抛物线经过点P(3,3)和点D(2,0)
∴ 解得 ∴过O、P、D三点的抛物线的解析式为y=x 2-2x;························· 7分
(3)由等腰直角三角形的对称性知D点关于∠AOC的平分线的对称点即为C点.
连接EC,它与∠AOC的平分线的交点即为所求的P点(因为PE+PD=EC,而两点之间线段最短),此时△PED的周长最小.
∵抛物线y=x 2-2x的顶点E的坐标(1,-1),C点的坐标(0,2)
设CE所在直线的解析式为y=kx+b
则 解得 ∴CE所在直线的解析式为y=-3x+2.
联立 ,解得 ,故点P的坐标为( , ).
△PED的周长即是CE+DE= ;··········································· 11分
(4)存在点P,使∠CPN=90°,其坐标为( , )或(2,2).······· 14分
24.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t= 时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
解:(1)∵因所求抛物线的顶点M的坐标为(2,4)
∴可设其对应的函数关系式为y=a(x -2)2+4.········································ 1分
又抛物线经过坐标原点O(0,0),∴a(0-2)2+4=0.················· 2分
解得a=-1.······················································································· 3分
∴所求函数关系式为y=-(x -2)2+4,即y=-x 2+4x.·············· 4分
(2)①点P不在直线ME上,理由如下:··················································· 5分
根据抛物线的对称性可知E点的坐标为(4,0).
设直线ME的解析式为y=kx+b,将M(2,4),E(4,0)代入,得
解得 .
∴直线ME的解析式为y=-2x+8.··················································· 6分
当t= 时,OA=AP= ,∴P( , ).······································· 7分
∵点P的坐标不满足直线ME的解析式y=-2x+8
∴当t= 时,点P不在直线ME上.·················································· 8分
②S存在最大值,理由如下:······························································· 9分
∵点A在x轴的非负半轴上,且N在抛物线上,∴OA=AP=t.
∴P(t,t),N(t,-t 2+4t),∴AN=-t 2+4t(0≤ ≤3)
∴PN=AN-AP=-t 2+4t-t=-t 2+3t=t(3-t)≥0······················ 10分
(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD.
∴S= DC·AD= ×3×2=3.······················································ 11分
(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形.
∵PN∥CD,AD⊥CD.
∴S= (CD+PN)·AD= (3-t 2+3t)×2=-t 2+3t+3=-(t- )2+ (0
当t= 时,S最大= .·································································· 12分
综上所述,当t= 时,以点P,N,C,D为顶点的多边形面积S有最大值,最大值为 . 13分
说明:(ⅱ)中的关系式,当t=0和t=3时也适合.
25.如图1,已知抛物线y=ax 2-2ax-3与x轴交于A、B两点,其顶点为C,过点A的直线交抛物线于另一点D(2,-3),且tan∠BAD=1.
(1)求抛物线的解析式;
(2)连结CD,求证:AD⊥CD;
(3)如图2,P是线段AD上的动点,过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值;
(4)点Q是抛物线上的动点,在x轴上是否存在点F,使以A,D,F,Q为顶点的四边形是平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.
解:(1)如图1,过点D作DH⊥x轴于H,则OH=2,DH=3.
∵tan∠BAD=1,∴AH=DH=3,∴AO=3-2=1.·························· 1分
∴A(-1,0).······················································································ 2分
把A(-1,0)代入y=ax 2-2ax-3,得a+2a-3=0.
∴a=1.································································································ 3分
∴抛物线的解析式为y=x 2-2x-3.·················································· 4分
(2)∵y=x 2-2x-3=(x-1)2-4
∴C(1,-4).······················································································ 5分
连结AC,则AD 2=3 2+3 2=18,CD 2=(2-1)2+(-3+4)2=2,AC 2=(1+1)2+4 2=20.
∴AD 2+CD 2=AC 2,∴△ACD是直角三角形,且∠ADC=90°.········ 7分
∴AD⊥CD.·························································································· 8分
(3)设直线AD的解析式为y=kx+b,把A(-1,0),D(2,-3)代入
求得直线BC的解析式为y=-x-1.·················································· 9分
设点P的横坐标为x,则P(x,-x-1),E(x,x 2-2x-3).
∵点P在点E的上方
∴EP=(-x-1)-(x 2-2x-3)=-x 2+x+2=-(x- )2+ ····· 10分
∴当x= 时,线段PE长度的最大值= .····································· 12分
(4)存在,点F的坐标分别为F1(-3,0),F2(1,0),F3( ,0),F4( ,0).
······················································································· 16分
关于点F坐标的求解过程(原题不作要求,本人添加,仅供参考)
如图3
①若四边形ADQ1F1为平行四边形,则AF1=DQ1,DQ1∥AF1.
∴点Q1的纵坐标为-3,代入y=x 2-2x-3,得x 2-2x-3=-3,∴x1=0,x2=2.
∵D(2,-3),∴Q1(0,-3),∴DQ1=2,∴AF1=2.
∴F1(-3,0).
②若四边形AF2DQ2为平行四边形,同理可得F2(1,0).
③若四边形AQ3F3D为平行四边形,则AQ3=DF3.
∴点Q3的纵坐标为3,代入y=x 2-2x-3,得x 2-2x-3=3,∴x3= ,x4= .
-1-( )= ,OF3=2-( )= .
∴F3( ,0).
④若四边形AQ4F4D为平行四边形,则
OF4=( )-( )+( )= ∴F4( ,0).
26.已知二次函数y=ax 2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D.
(1)求二次函数的解析式;
(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.
解:(1)∵二次函数y=ax 2+bx+c的图象经过点A(1,0),B(2,0),C(0,-2)
∴ 解得 ∴二次函数的解析式y=-x 2+3x-2.·············································· 2分
(2)当△EDB∽△AOC时,有 = 或 = ∵AO=1,CO=2,BD=m-2.
当 = 时,得 = ,∴ED= .
∵点E在第四象限,∴E1(m, ).············· 4分
当 = 时,得 = ,∴ED=2m-4.
∵点E在第四象限,∴E2(m,4-2m).············ 6分
(3)假设抛物线上存在一点F,使得四边形ABEF为平行四边形,则
EF=AB=1,点F的横坐标为m-1.
当点E1的坐标为(m, )时,点F1的坐标为(m-1, ).
∵点F1在抛物线的图象上,∴ =-(m-1)2+3(m-1)-2.
∴2m 2-11m+14=0,解得m1= ,m2=2(不合题意,舍去).
∴F1( ,- ).
∴S□ABEF =1× = .········································································ 9分
当点E2的坐标为(m,4-2m)时,点F2的坐标为(m-1,4-2m).
∵点F2在抛物线的图象上,∴4-2m=-(m-1)2+3(m-1)-2.
∴m 2-7m+10=0,解得m1=5,m2=2(不合题意,舍去).
∴F2(4,-6).
∴S□ABEF =1×6=6.········································································· 12分
注:其它解法可参照评分标准给分.
27.已知:t1,t2是方程t 2+2t-24=0,的两个实数根,且t1
(1)求这个抛物线的解析式;
(2)设点P(x,y)是抛物线上一动点,且位于第三象限,四边形OPAQ是以OA为对角线的平行四边形,求□OPAQ的面积S与 之间的函数关系式,并写出自变量 的取值范围;
(3)在(2)的条件下,当□OPAQ的面积为24时,是否存在这样的点P,使□OPAQ为正方形?若存在,求出P点的坐标;若不存在,说明理由.
解:(1)由t 2+2t-24=0,解得t1=-6,t2=4.··············································· 1分
∵t1
∵抛物线y= x 2+bx+c的图象经过点A,B两点
∴ 解得 ∴这个抛物线的解析式为y= x 2+ x+4.
···························································································· 4分
(2)∵点P(x,y)在抛物线上,且位于第三象限,∴y<0,即-y>0.
又∵S=2S△APO=2× ×| OA|·| y |=| OA|·| y |=6| y |
∴S=-6y.·························································································· 6分
=-6( x 2+ x+4)
=-4(x 2+7x+6)
=-4(x+ )2+25.······································································ 7分
令y=0,则 x 2+ x+4=0,解得x1=-6,x2=-1.
∴抛物线与x轴的交点坐标为(-6,0)、(-1,0)
∴x的取值范围为-6
(3)当S=24时,得-4(x+ )2+25=24,解得:x1=-4,x2=-3.· 9分
代入抛物线的解析式得:y1=y2=-4.
∴点P的坐标为(-3,-4)、(-4,-4).
当点P为(-3,-4)时,满足PO=PA,此时,□OPAQ是菱形.
当点P为(-4,-4)时,不满足PO=PA,此时,□OPAQ不是菱形.
·························································································· 10分
要使□OPAQ为正方形,那么,一定有OA⊥PQ,OA=PQ,此时,点的坐标为(-3,-3),而(-3,-3)不在抛物线y= x 2+ x+4上,故不存在这样的点P,使□OPAQ为正方形. 12分
相关链接:
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。