编辑:sx_gaomj
2012-05-16
精品学习网中考频道提供大量中考资料,在第一时间更新中考资讯。以下是2012中考数学压轴题及答案40例:
5.如图,在直角坐标系 中,点 为函数 在第一象限内的图象上的任一点,点 的坐标为 ,直线 过 且与 轴平行,过 作 轴的平行线分别交 轴, 于 ,连结 交 轴于 ,直线 交 轴于 .
(1)求证: 点为线段 的中点;
(2)求证:①四边形 为平行四边形;
②平行四边形 为菱形;
(3)除 点外,直线 与抛物线 有无其它公共点?并说明理由.
(08江苏镇江28题解析)(1)法一:由题可知 .
, ,
.························································································ (1分)
,即 为 的中点.··································································· (2分)
法二: , , .························································ (1分)
又 轴, .············································································· (2分)
(2)①由(1)可知 , ,
, ,
.························································································· (3分)
,
又 , 四边形 为平行四边形.················································ (4分)
②设 , 轴,则 ,则 .
过 作 轴,垂足为 ,在 中,
.
平行四边形 为菱形.············································································ (6分)
(3)设直线 为 ,由 ,得 , 代入得:
直线 为 .······················ (7分)
设直线 与抛物线的公共点为 ,代入直线 关系式得:
, ,解得 .得公共点为 .
所以直线 与抛物线 只有一个公共点 .········································ (8分)
6.如图13,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:① CB=CE ;② D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
(1)∵ 点B(-2,m)在直线y=-2x-1上,
∴ m=-2×(-2)-1=3. ………………………………(2分)
∴ B(-2,3)
∵ 抛物线经过原点O和点A,对称轴为x=2,
∴ 点A的坐标为(4,0) .
设所求的抛物线对应函数关系式为y=a(x-0)(x-4). ……………………(3分)
将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ .
∴ 所求的抛物线对应的函数关系式为 ,即 . (6分)
(2)①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5).
过点B作BG∥x轴,与y轴交于F、直线x=2交于G,
A
B
C
O
D
E
x
y
x=2
G
F
H
则BG⊥直线x=2,BG=4.
在Rt△BGC中,BC= .
∵ CE=5,
∴ CB=CE=5. ……………………(9分)
②过点E作EH∥x轴,交y轴于H,
则点H的坐标为H(0,-5).
又点F、D的坐标为F(0,3)、D(0,-1),
∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.
∴ △DFB≌△DHE (SAS),
∴ BD=DE.
即D是BE的中点. ………………………………(11分)
(3) 存在. ………………………………(12分)
由于PB=PE,∴ 点P在直线CD上,
∴ 符合条件的点P是直线CD与该抛物线的交点.
设直线CD对应的函数关系式为y=kx+b.
将D(0,-1) C(2,0)代入,得 . 解得 .
∴ 直线CD对应的函数关系式为y= x-1.
∵ 动点P的坐标为(x, ),
∴ x-1= . ………………………………(13分)
解得 , . ∴ , .
∴ 符合条件的点P的坐标为( , )或( , ).…(14分)
(注:用其它方法求解参照以上标准给分.)
7.如图,在平面直角坐标系中,抛物线 =- + + 经过A(0,-4)、B( ,0)、 C( ,0)三点,且 - =5.
(1)求 、 的值;(4分)
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)
解:
(解析)解:(1)解法一:
∵抛物线 =- + + 经过点A(0,-4),
∴ =-4 ……1分
又由题意可知, 、 是方程- + + =0的两个根,
∴ + = , =- =6·································································· 2分
由已知得( - ) =25
又( - ) =( + ) -4 = -24
∴ -24=25
解得 =± ·········································································································· 3分
当 = 时,抛物线与 轴的交点在 轴的正半轴上,不合题意,舍去.
∴ =- . ········································································································ 4分
解法二:∵ 、 是方程- + +c=0的两个根,
即方程2 -3 +12=0的两个根.
∴ = ,·········································································· 2分
∴ - = =5,
解得 =± ······························································································ 3分
(以下与解法一相同.)
(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分
又∵ =- - -4=- ( + ) + ······························· 6分
∴抛物线的顶点(- , )即为所求的点D.·································· 7分
(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),
根据菱形的性质,点P必是直线 =-3与
抛物线 =- - -4的交点, ························································· 8分
∴当 =-3时, =- ×(-3) - ×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. ·········· 9分
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上.·························································································· 10分
8.已知:如图14,抛物线 与 轴交于点 ,点 ,与直线 相交于点 ,点 ,直线 与 轴交于点 .
(1)写出直线 的解析式.
(2)求 的面积.
(3)若点 在线段 上以每秒1个单位长度的速度从 向 运动(不与 重合),同时,点 在射线 上以每秒2个单位长度的速度从 向 运动.设运动时间为 秒,请写出 的面积 与 的函数关系式,并求出点 运动多少时间时, 的面积最大,最大面积是多少?
(解析)解:(1)在 中,令 , , ·············································· 1分
又 点 在 上
的解析式为 ············································································ 2分
(2)由 ,得 ·················································· 4分
, , ······························································································ 5分
························································································ 6分
(3)过点 作 于点 ······························································································· 7分
·········································································································· 8分
由直线 可得: 在 中, , ,则 , ······················································································ 9分
··················································································· 10分
···························································································· 11分
此抛物线开口向下, 当 时, 当点 运动2秒时, 的面积达到最大,最大为 .······················ 12分
相关链接:2012中考数学压轴题及答案40例(3)
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。