编辑:sx_zhangwl
2012-11-26
【编者按】为了丰富同学们的学习生活,精品学习网中考频道为同学们搜集整理了中考数学模拟题:2012年辽宁省统计与概率中考题解析,供大家参考,希望对大家有所帮助!
2012年辽宁省统计与概率中考题解析
专题7:统计与概率
锦元数学工作室 编辑
一、选择题
1. (2012辽宁本溪3分)有三张正面分别标有数字-2,3, 4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是【 】
A、 B、 C、 D、
【答案】C。
【考点】列表法或树状图法,概率。
【分析】根据题意画出树状图或列表,然后由图表求得所有等可能的结果与两次抽取的卡片上的数字之积为正偶数的情况,再利用概率公式求解即可求得答案:
画树状图得:
∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
∴两次抽取的卡片上的数字之积为正偶数的概率是: 。故选C。
2. (2012辽宁朝阳3分)某市5月上旬的最高气温如下(单位:℃):28、29、31、29、33,对这组数据,下列说法错误的是【 】
A.平均数是30 B. 众数是29 C. 中位数是31 D. 极差是5
【答案】C。
【考点】平均数,众数,中位数,极差。
【分析】平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:
(28+29+31+29+33)÷5=30 。选项A正确。
众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是29,故这组数据的众数为29。选项B正确。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为28、29、29、31、33,∴中位数为:29。选项C错误。
根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是33-28=5。选项A正确。
故选C。
3. (2012辽宁大连3分)甲、乙两班分别有10名选手参加学校健美操比赛,两班参赛选手身高的方差分别为 ,则下列说法正确的是【 】
A.甲班选手比乙班选手身高整齐 B.乙班选手比甲班选手身高整齐
C.甲、乙两班选手身高一样整齐 D.无法确定哪班选手身高更整齐
【答案】A。
【考点】方差。
【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定 。因此,
由于 ,即 ,从而甲班选手比乙班选手身高整齐。故选A。
4. (2012辽宁大连3分)一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除颜色不同外其他完全相同。从袋子中随机摸出一个球,则它是黄球的概率为【 】
A. B. C. D.
【答案】B。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。因为袋子中共有3+4+5=12个球,其中有4个黄球,所以从袋子中随机摸出一个球,它是黄球的概率为 。故选B。
5. (2012辽宁丹东3分)下列事件为必然事件的是【 】
A.任意买一张电影票,座位号是偶数
B.打开电视机,正在播放动画片
C.3个人分成两组,一定有2个人分在一组
D.三根长度为2cm,2cm,4cm的木棒能摆成三角形
【答案】C。
【考点】必然事件。
【分析】必然事件表示在一定条件下,必然出现的事情。因此,
A.任意买一张电影票,座位号是偶数是随机事件;
B.打开电视机,正在播放动画片是随机事件;
C.3个人分成两组,一定有2个人分在一组是必然事件;
D.三根长度为2cm,2cm,4cm的木棒能摆成三角形是不可能事件。
故选C。
6. (2012辽宁阜新3分)每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:
册数 0 1 2 3 4
人数 3 13 16 17 1
则这50名学生读数册数的众数、中位数是【 】
A.3,3 B.3,2 C.2,3 D.2,2
【答案】B。
【考点】众数,中位数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是3,故这组数据的众数为3。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。∴中位数是按第25、26名学生读数册数的平均数,为:2。
故选B。
7. (2012辽宁锦州3分)某中学礼仪队女队员的身高如下表:
身高(㎝) 165 168 170 171 172
人数(名) 4 6 5 3 2
则这个礼仪队20名女队员身高的众数和中位数分别是【 】
A.168 ㎝,169㎝ B.168㎝,168㎝ C.172㎝,169㎝ D.169 ㎝,169㎝
【答案】A。
【考点】众数,中位数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是168,故这组数据的众数为168㎝。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此中位数是按从小到大排列后第10,11个数的平均数,为: ㎝。
故选A。
8. (2012辽宁沈阳3分)气象台预报“本市明天降水概率是30%” ,对此消息下列说法正确的是【 】
A.本市明天将有30%的地区降水 B.本市明天将有30%的时间降水
C.本市明天有可能降水 D.本市明天肯定不降水
【答案】C。
【考点】概率的意义。
【分析】本市明天降水概率是30%是指明天降水的可能性问题,且可能性比较小,即本市明天有可能降水。故选C。
9. (2012辽宁铁岭3分)为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居
民一周的体育锻炼时间进行了统计,结果如下表:
锻炼时间(时) 3 4 5 6 7
人数(人) 6 13 14 5 2
这40名居民一周体育锻炼时间的中位数是【 】
A.4小时 B.4.5小时 C.5小时 D.5.5小时
【答案】C。
【考点】中位数。
【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此这组数据的中位数是按从小到大排列后第20和21个数的平均数,它们都为5。故这40名居民一周体育锻炼时间的中位数是5小时。故选C。
10. (2012辽宁铁岭3分)在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为【 】
A. B. C. D.
【答案】A。
【考点】几何概率,正方形和圆形的对称性质。
【分析】根据正方形和圆形的对称性质,正方形的对角线把正方形分成的四个三角形均为同底等高的三角形,故其面积相等,因此阴影区域的面积是正方形面积的 。因此故针头扎在阴影区域的概率为 。故选A。
2. (2012辽宁本溪3分)在一组数据-1,1 ,2 ,2 ,3 ,-1,4中,众数是 ▲ 。
【答案】-1和2。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据(众数可以不止一个),这组数据中,出现次数最多的是-1和2,故这组数据的众数为-1和2。
3. (2012辽宁本溪3分)在一个不透明的袋中,装有6个红球和若干个绿球,若再往此袋中放入5个白
球(袋中所有球除颜色外完全相同)摇匀后摸出一球,摸到红球的概率恰好为 ,那么此袋中原有绿球
▲ 个。
【答案】4
【考点】概率公式。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。因此,
设此袋中原有绿球的个数为m,已知有6个红球,5个白球,那么袋中一共有球(11+m)个。
由题意, ,解得m=4,即此袋中原有绿球4个。
4. (2012辽宁大连3分)图表记录了一名球员在罚球线上投篮的结果。那么,这名球员投篮一次,投中的概率约是 ▲ ___(精确到0.1)。
【答案】0.5。
【考点】用频率估计概率。
【分析】对于非等可能事件概率的求法,用大量重复试验的频率估计概率。所以这名球员投篮一次,投中的概率约是0.5。
5. (2012辽宁丹东3分)一组数据-1,-2,x,1, 2的平均数为0,则这组数据的方差为 ▲ .
【答案】2。
【考点】平均数,方差。
【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案:
由平均数的公式得:(-1-2+x +1+2)÷5=0,解得x=5。
∴方差= 。
6. (2012辽宁阜新3分)一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是 ▲ .
【答案】15个。
【考点】利用频率估计概率。
【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解:
由题意可得, ,解得,a=15(个)。
7. (2012辽宁锦州3分)已知三角形的两条边长分别是7和3,第三边长为整数,则这个三角形的周长
是偶数的概率是 ▲ .
【答案】 。
【考点】三角形的三边关系,概率。
【分析】根据三角形的三边关系,7-3<第三边长<7+3,即4<第三边长<10。
∴第三边长可能是5,6,7,8,9,三角形的周长分别是15,16,17,18,19,其中偶数有2个。
∴这个三角形的周长是偶数的概率是 。
8. (2012辽宁沈阳4分)一组数据1,3,3,5,7的众数是 ▲ .
【答案】3。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是3,故这组数据的众数为3。
9. (2012辽宁铁岭3分)从-2、1、 这三个数中任取两个不同的数相乘,积是无理数的概率是
▲ .
【答案】 。
【考点】列表法或树状图法,概率,实数的运算。
【分析】画树状图得:
∵共有6种等可能的结果,积是无理数的有4种情况,
∴积是无理数的概率是 。
10. (2012辽宁营口3分)数据1,2,3, 的平均数是3,数据4,5, , 的众数是5,则 = ▲ .
【答案】11。
【考点】平均数,众数。
【分析】∵数据1,2,3, 的平均数是3,∴ ,解得 。
∵数据4,5, , 的众数是5,即4,5,6, 的众数是5,∴ =5。
∴ 。
三、解答题
1. (2012辽宁鞍山10分)现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为 .
(1)求乙盒中红球的个数;
(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.
【答案】解:(1)设乙盒中红球的个数为x,
根据题意得 ,解得x=3。
经检验,x=3是方程的根。
∴乙盒中红球的个数为3。
(2)列表如下:
∵共有15种等可能的结果,两次摸到不同颜色的球有7种,
∴两次摸到不同颜色的球的概率= 。
【考点】分式方程的应用,列表法或树状图法,概率公式。
【分析】(1)设乙盒中红球的个数为x,根据概率公式由从乙盒中随机摸出一个球,摸到红球的概率为 可得到方程得 ,然后解方程即可。
(2)列表或画树状图展示所有15种等可能的结果数,再找出两次摸到不同颜色的球占7种,然后根据概率公式即可得到两次摸到不同颜色的球的概率。
2. (2012辽宁鞍山10分)为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)本次抽样调查了多少个家庭?
(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;
(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;
(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?
【答案】解:(1)∵观察统计图知:用车时间在1.5~2小时的有30人,其圆心角为54°,
∴抽查的总人数为30÷ =200(人)。
(2)用车时间在0.5~1小时的有200× =60(人);[
用车时间在2~2.5小时的有200﹣60﹣30﹣90=20(人)。
补充条形统计图如下:
用车时间的中位数落在1~1.5小时时间段内。
(3)用车时间在1~1.5小时的部分对应的扇形圆心角的度数为 ×360°=162°。
(4)该社区用车时间不超过1.5小时的约有1600× =1200(人)。
【考点】条形统计图,扇形统计图,频数。频率和总量的关系,用样本估计总体。
【分析】(1)用1.5﹣2小时的频数除以其所占的百分比即可求得抽样调查的人数。
(2)根据圆心角的度数求出每个小组的频数即可补全统计图;用车时间的第100和101个家庭都在1~1.5小时时间段内,故用车时间的中位数落在1~1.5小时时间段内。
(3)用人数除以总人数乘以周角即可求得圆心角的度数。
(4)用总人数乘以不超过1.5小时的所占的百分比即可。
3. (2012辽宁本溪12分)某中学为了更好地活跃校园文化生活,拟对本校自办的“辉煌”校报进行改版。先从全校学生中随机抽取一部分学生进行了一次问卷调查,题目为“你最喜爱校报的哪一个板块”(每人只限选一项)。问卷收集整理后绘制了下面上不完整的频数分布表和扇形统计图。
板块名称 频数(人) 频率
科技创新 66 0.165
美文佳作 70 0.175
校园新闻 72 0.18
自然探索 a 0.16
体坛纵横 84 b
其它 44 0.11
合计
(1)填空:频数分布表中a=_______,b=________;
(2)“自然探索”板块在扇形统计图中所占的圆心角的度数为________;
(3)在参加此次问卷调查的学生中,最喜爱哪一个板块的人数最多?有多少人喜欢?
(4)若全校有1500人,估计喜欢“校园新闻”板块的有多少人?
【答案】解:(1)64;0.21。
(2)57.6°。
(3)最喜爱体坛纵横的人数最多,是84人。
(4)若全校有1500人,估计喜欢“校园新闻”板块的有1500×0.48=270人。
【考点】频数(率)分布表,扇形统计图,频数、频率和总量的关系,用样本估计总体。
【分析】(1)首先根据科技创新的是66人,频率是0.165,据此即可求得总人数:66÷0.165=400,然后利用总人数乘以0.16即可求得a的值:a=400×0.16=64;利用84除以总人数即可求得频率b的值:b=84÷400=0.21。
(2)利用“自然探索”板块的频率与360°的乘积就是扇形统计图中所占的圆心角的度数:0.16×360=57.6°。
(3)最喜爱的板块就是人数最多,或频率最大的一组。
(4)用总人数1500乘以喜欢“校园新闻”板块的频率即可求解。
4. (2012辽宁朝阳8分)某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题。
(1)在这次调查活动中,一共调查了 ▲ 名学生,并请补全统计图。
(2)“羽毛球”所在的扇形的圆心角是 ▲ 度。
(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?
【答案】解:(1)200。
∵喜欢篮球的人数:200×20%=40(人),喜欢羽毛球的人数:200-80-20-40=60(人);
喜欢排球的20人,应占 ,
喜欢羽毛球的应占统计图的1-20%-40%-10%=30%。
∴根据以上数据补全统计图:
(2)108°。
(3)该校1200名学生中估计爱好乒乓球运动的约有:40%×1200=480(人)。
【考点】折线统计图,扇形统计图,频数、频率和总量的关系,用样本估计总体。
【分析】(1)读图可知喜欢乒乓球的有80人,占40%.所以一共调查了80÷40%=200人;求出喜欢羽毛球和篮球的人数可补全折线统计图;求出羽毛球和篮球所占的百分比可补全扇形统计图。
(2)喜欢羽毛球的应占统计图的1-20%-40%-10%=30%,所占的圆心角为360°×30%=108°。
(3)利用样本估计总体的办法,计算出答案即可。
5. (2012辽宁朝阳10分)在不透明的箱子里放有4个乒乓球。每个乒乓球上分别写有数字1、2、3、4,从箱子中摸出一个球记下数字后放回箱中,摇匀后再摸出一个球记下数字。若将第一次摸出的球上的数字记为点的横坐标,第二次摸出的球上的数字记为点的纵坐标。
(1)请用列表法或树状图法写出两次摸球后所有可能的结果;
(2)求这样的点落在如图所示的圆中的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别与x轴、y轴切于点(2,0和(0,2))两点 )。
【答案】解:(1)列表得:
第一次
第二次 1 2 3 4
1 (1,1) (2,1) (3,1) (4,1)
2 (1,2) (2,2) (3,2) (4,2)
3 (1,3) (2,3) (3,3) (4,3)
4 (1,4) (2,4) (3,4) (4,4)
∴共有16种等可能的结果。
(2)∵这样的点落在如图所示的圆内的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)9点(如图),
∴这样的点落在如图所示的圆内的概率为: 。
【考点】列表法或树状图法,概率,点和圆的位置关系。
【分析】(1)首先根据题意列出表格或画树状图,然后由图表即可求得所有等可能的结果。
(2)根据(1)中的表格求得这样的点落在如图所示的圆内的情况,然后利用概率公式求解即可求得答案。
6. (2012辽宁大连12分)某车间有120名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的30名工人进行调查。整理调查结果,绘制出不完整的条形统计图(如图)。根据图中的信息,解答下列问题:
(1)在被调查的工人中,日加工9个零件的人数为_____名;
(2)在被调查的工人中,日加工12个零件的人数为____名,日加工____个零件的人数最多,日加工15个零件的人数占被调查人数的____%;
(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数。
【答案】解:(1)4。(2)8;14;20。
(3)∵30名样本中日人均加工零件数=(4×9+8×12+12×14+6×15)÷30=13(个),
∴估计该车间日人均加工零件数为13个。
∴估计该车间日日加工零件的总数为120×13=1560(个)。
【考点】条形统计图,频数、频率和总量的关系,众数,平均数,用样本估计总体。
【分析】(1)直接从条形统计图可得。
(2)在被调查的工人中,日加工12个零件的人数为:30-4-12-6=8(名)。直接从条形统计图可得日加工14个零件的人数最多。日加工15个零件的人数占被调查人数百分比为6÷30×100%=20%。
(3)求出30名样本中日人均加工零件数,用用样本估计总体的方法即可估计该车间日人均加工零件数。用该车间日人均加工零件数×该车间工人数即可该车间日日加工零件的总数。
7. (2012辽宁丹东10分)某小型企业实行工资与业绩挂钩制度,工人工资分为A、B、C、D四个档次.小
明对该企业三月份工人工资进行调查,并根据收集到的数据,绘制了如下尚不完整的统计表与扇形统计图.
根据上面提供的信息,回答下列问题:
(1)求该企业共有多少人?
(2)请将统计表补充完整;
(3)扇形统计图中“C档次”的扇形所对的圆心角是 度.
【答案】解:(1)∵20÷ =100(人),
∴该企业共有100人。
(2)填表如下:
档次 工资(元) 频数(人) 频率
A 3000 20 0.20
B 2800 30 0.30
C 2200 40 0.40
D 2000 10 0.10
(3)144。
【考点】频数(率)分布表,扇形统计图,频数、频率和总量的关系,扇形圆心角。
【分析】(1)根据档次是A的工人,在扇形统计图中对应的扇形的圆心角是72°,则A所占的比例是: ,而档次是A的有20人,据此即可求得总人数。
(2)A的频率是: =0.20,利用B的频率0.30乘以总人数即可求得B的频数,同理求得D的频率,然后根据各档次的频率的和是1,即可求得C的频率,进而求得频数。
(3)利用C的频率乘以360°,即可求解:360×0.4=144°。
8. (2012辽宁丹东10分)某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4
个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日
内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场
根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,
则在本次消费中:
(1)该顾客至少可得___元购物券,至多可得___元购物券;
(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.
【答案】解:(1)10,80。
(2)列表得:
0 10 30 50
0 - (0,10) (0,30) (0,50)
10 (10,0) - (10,30) (10,50)
30 (30,0) (30,10) - (30,50)
50 (50,0) (50,10) (50,30) -
∵两次摸球可能出现的结果共有12种,每种结果出现的可能性相同,而所获购物券的金额不低于50元的结果共有6种。
∴该顾客所获购物券的金额不低于50元的概率是: 。
【考点】列表法和树状图法,概率。
【分析】(1)根据题意即可求得该顾客至少可得的购物券,至多可得的购物券的金额。
根据题意得:该顾客至少可得购物券:0+10=10(元),至多可得购物券:30+50=80(元)。
(2)首先根据题意列出表格或画树状图,然后由图表求得所有等可能的结果与该顾客所获购物券的金额不低于50元的情况,再利用概率公式求解即可求得答案。
9. (2012辽宁阜新10分)自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:
(1)该校本次调查中,共调查了多少名学生?
(2)请将两个统计图补充完整;
(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?
【答案】解:(1)该校本次一共调查了42÷42%=100名学生。
(2)∵喜欢跑步的人数=100-42-12-26=20(人),
喜欢跑步的人数占被调查学生数的百分比= 100%=20%,
∴ 将两个统计图补充完整如下:
(3)在本次调查中随机抽取一名学生,他喜欢跑步的概率= 。
【考点】条形统计图,扇形统计图,频数、频率和总量的关系,概率公式。
【分析】(1)结合条形统计图和扇形统计图,利用A组频数42除以A组频率42%,即可得到该校本次调查中,共调查了多少名学生。
(2)利用(1)中所求人数,减去A、B、D组的频数即可;C组频数除以100即可得到C组频率,从而将两个统计图补充完整。
(3)根据概率公式直接解答。
10. (2012辽宁锦州10分)随着人们生活水平的提高,城市家庭私家车的拥有量越来越多.私家车给人们
的生活带来很多方便,同时也给城市的道路交通带来了很大的压力,尤其是节假日期间交通拥堵现象非常
严重.为了缓解交通堵塞,尽量保持道路通畅,某市有关部门号召市民“在节假日期间选择公共交通工具
出行”.为了了解市民的意见和态度,有关部门随机抽取了若干市民进行了调查.经过统计、整理,制作统
计图如下.请回答下列问题:
(1)这次抽查的市民总人数是多少?
(2)分别求出持“赞成”态度、“无所谓”态度的市民人数以及持“无所谓”态度的人数占总人数的
百分比,并补全条形统计图和扇形统计图;
(3)若该市约有18万人,请估计对这一问题持“赞成”态度的人数约是多少?
【答案】解:(1)150÷30%=500(人),
答:这次抽查的市民总人数是500人。
(2) 持“赞成”态度的市民人数有:500×25%=125(人),
持“无所谓”态度的市民人数有:500-150-125=225(人),
持“无所谓”态度的人数占总人数的百分比是:225÷500=45% 。
统计图补充如图示:
(3)180 000×25%=45 000(人),
答:估计对这一问题持“赞成”态度的人数约为45 000人。
【考点】条形统计图,扇形统计图,频数、频率和总量的关系,用样本估计总体。
【分析】(1)用持“反对”态度的市民的信息即可求得这次抽查的市民总人数。
(2)由(1)这次抽查的市民总人数与相应的信息求出持“赞成”态度、“无所谓”态度的市民人数以及持“无所谓”态度的人数占总人数的百分比,将统计图补充完整。
(3)用样本估计总体求解即可。
11. (2012辽宁锦州10分)如图,有一个可以自由转动的转盘被平均分成五个扇形,五个扇形内部分别
标有数字1、-2、3、-4、5.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为m,
n(当指针指在边界线时视为无效,重转),从而确定一个点的坐标为A(m,n).请用列表或者画树状图的
方法求出所有可能得到的点A的坐标,并求出点A在第一象限内的概率.
12. (2012辽宁沈阳8分)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.
(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)
(2) 请你用列表法或画树状图(树形图) 法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)
【答案】解: (1) 。
(2) 列表得:
或画树状图得:中.考.资.源.网
由表格 (或树状图) 可知, 共有9种可能出现的结果, 每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学, 一个是国外大学的结果有4种: (A, C),(B, C),(C, A),(C, B)。
∴P(两次抽取的卡片上的图片一个是国内大学一个是国外大学)= 。
【考点】列表法或树状图法,概率。
【分析】(1)根据抽取一次,每一所学校都有 的几率被抽到的可能解答。
(2)列出表格或画出树状图,然后根据概率公式列式求解。
13. (2012辽宁沈阳10分)为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项 ):
A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.
根据调查结果制作了统计图表的一部分如下:
(1)此次抽样调查的人数为 ① 人;
(2)结合上述统计图表可得m= ② ,n= ③ ;
(3)请根据以上信息直接在答题卡中补全条形统计图.
【答案】.解: (1) ①500。(2)② 35%, ③5%。
(3)补全条形统计图如下:
【考点】统计表,条形统计图,频数、频率和总量的关系。
【分析】(1)B组的人数除以所占的百分比,计算即可得解: 75÷15%=500(人)。
(2)先用E组的人数除以总人数求出n的值:n=25÷500×100%=5%;再根据总百分比为1计算求出m的值:m=1-20%-15%-25%-5%=1-65%=35%。
(3)根据百分比求出A组、C组的人数:A组人数:500×20%=100人,C组人数:500×35%=175人,然后补全统计图即可。
14. (2012辽宁铁岭12分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000
米及女生800米测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,
回答下列问题:
(1)该校毕业生中男生有 ▲ 人,女生有 ▲ 人;
(2)扇形统计图中a= ▲ ,b= ▲ ;
(3)补全条形统计图(不必写出计算过程);
(4)若本校500名毕业生中随机抽取一名学生,这名学生该项测试成绩在8分以下的概率是多少?
【答案】解:(1)300;200。
(2)12;62。
(3)补图如图所示:
(4)随机抽取的学生的测试成绩在8分以下的概率是10%。
【考点】条形统计图,扇形统计图,频数、频率和总量的关系,用样本估计总体,概率的意义。
【分析】(1)男生人数为20+40+60+180=300,女生人数为500-300=200。
(2)8分对应百分数为(40+20)÷500=12%,10分对应百分数为1﹣10%﹣12%﹣16%=62%。因此,a=12,b=62。
(3)8分以下总人数=500×10%=50,其中女生=50-20;10分总人数=500×62%=310,其中女生人数=310-180=130。据此补充条形统计图。
(4)利用样本的百分数去估计总体的概率,8分以下的百分数为10%,故8分以下的概率为10%。
15. (2012辽宁营口10分)2012年4月23日是第17个世界读书日,《教育导报》记者就四川省农村中
小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完
整).设 表示阅读书籍的数量( 为正整数,单位:本).其中A: ; B: ; C: ;
D: .请你根据两幅图提供的信息解答下列问题:
(1)本次共调查了多少名教师?
(2)补全条形统计图;
(3)计算扇形统计图中扇形D的圆心角的度数.
【答案】解:(1)∵38÷19﹪=200(人),
∴本次共调查了200名教师。
(2)∵D的人数为200-38-74-48=40,
∴补全条形统计图如图:
(3)∵360°× =72°,∴扇形统计图中扇形D的圆心角的度数为72°。
【考点】扇形统计图,条形统计图,频数、频率和总量的关系。
【分析】(1)用A组的频数除以A组所占的百分比即可求得抽查的教师人数。
(2)用总人数减去A、B、C组的频数即可求得D组的频数,从而补全统计图。
(3)用该组的频数除以总人数乘以周角的度数即可求得圆心角的度数。
16. (2012辽宁营口10分)某市今年中考体育测试,其中男生测试项目有1000米跑、立定跳远、掷实心
球、一分钟跳绳、引体向上五个项目.考生须从这五个项目中选取三个项目,要求:1000米跑必选,立定
跳远和掷实心球二选一,一分钟跳绳和引体向上二选一.
(1) 写出男生在体育测试中所有可能选择的结果;
(2) 请你用列表法或画树状图法,求出两名男生在体育测试中所选项目完全相同的概率.
【答案】解:(1)将立定跳远、掷实心球、一分钟跳绳和引体向上分别用A,B,C,D表示,
画树状图得:
∴可得可能选择的结果有四种:①1000米跑、立定跳远、一分钟跳绳;②1000米跑、立
定跳远、引体向上;③1000米跑、掷实心球、一分钟跳绳;④1000米跑、掷实心球、引体向上。
(2)列表得
① ② ③ ④
① (①,①) (①,②) (①,③) (①,④)
② (②,①) (②,②) (②,③) (②,④)
③ (③,①) (③,②) (③,③) (③,④)
④ (④,①) (④,②) (④,③) (④,④)
∵所有可能出现的结果共有16种,其中所选项目相同的有4种,
∴两人所选项目相同的概率为: 。
【考点】列表法或画树状图法,概率。
【分析】(1)将立定跳远、掷实心球、一分钟跳绳和引体向上分别用A,B,C,D表示,画树状图或列表,由图表求得所有等可能的结果。
(2)根据题意画树状图或列表,由图表求得所有等可能的结果与两名男生在体育测试中所选项目完全相同的情况,再利用概率公式求解即可求得答案。
2012中考科目:
【中考语文】【中考数学】【中考英语】【中考物理】【中考化学】
【中考政治】【中考历史】【中考生物】【中考地理】 【中考体育】
2012中考考前:
【中考动态】【中考心理辅导】 【中考家长】【中考饮食】 【中考政策】
2012中考考后:
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。