您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2012年广东省中考数学统计与概率试题分类解析

编辑:sx_zhangwl

2012-12-11

【编者按】为了丰富同学们的学习生活,精品学习网中考频道为同学们搜集整理了中考数学模拟题:2012年广东省中考数学统计与概率试题分类解析,供大家参考,希望对大家有所帮助!

2012年广东省中考数学统计与概率试题分类解析

一、选择题

1. (2012广东省3分)数据8、8、6、5、6、1、6的众数是【 】

A. 1 B. 5 C. 6 D. 8

【答案】C。

【考点】众数。

【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。故选C。

2. (2012广东佛山3分)吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最合适的调查方式是【 】

A.普查 B.抽样调查 C.在社会上随机调查 D.在学校里随机调查

【答案】B。

【考点】统计的调查方式选择。

【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查。

因此,要了解人们被动吸烟的情况,由于人数众多,意义不大,选普查不合适,在社会上和在学校里随机调查,选择的对象不全面,故选抽样调查。故选B。

3. (2012广东梅州3分)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的【 】

A.总体  B.个体  C.样本  D.以上都不对

【答案】B。

【考点】总体、个体、样本、样本容量的概念。

【分析】根据总体、个体、样本、样本容量的定义进行解答:

∵抽查的是“五一”期间每天乘车人数,∴“五一”期间每天乘车人数是个体。故选B。

4. (2012广东汕头4分)数据8、8、6、5、6、1、6的众数是【 】

A. 1 B. 5 C. 6 D. 8

【答案】C。

【考点】众数。

【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。故选C。

7. (2012广东湛江4分)某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为【 】

A.12 B.13 C .14 D.15

【答案】B。

【考点】众数。

【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是13,出现四次故这组数据的众数为13。故选B。

8. (2012广东肇庆3分)下列数据3,2,3,4,5,2,2的中位数是【 】

A.5 B.4 C.3 D.2

【答案】C。

【考点】中位数。

【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为2,2,2,3,3,4,5,∴中位数是按从小到大排列后第4个数,为:3。故选C。

9. (2012广东肇庆3分)某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是【 】

A.扇形甲的圆心角是72°

B.学生的总人数是900人

C.丙地区的人数比乙地区的人数多180人

D.甲地区的人数比丙地区的人数少180人

【答案】D。

【考点】扇形统计图,扇形圆心角的求法,频数、频率和总量的关系。

【分析】A.根据甲区的人数是总人数的 ,则扇形甲的圆心角是: ×360°=72°,故此选项正确,不符合题意;

B.学生的总人数是:180÷ =900人,故此选项正确,不符合题意;

C.丙地区的人数为:900× =450,,乙地区的人数为:900× =270,则丙地区的人数比乙地区的人数多450-270=180人,故此选项正确,不符合题意;

D.甲地区的人数比丙地区的人数少270-180=90人,故此选项错误,符合题意。

故选D。

10. (2012广东珠海3分)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为 .二月份白菜价格最稳定的市场是【 】

A.甲 B.乙 C.丙 D.丁

【答案】B。

【考点】方差

【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定 。因此,

∵ ,∴二月份白菜价格最稳定的市场是乙。

故选B。

二、填空题

1. (2012广东梅州3分)为参加2012年“梅州市实践毕业生升学体育考试”,小峰同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)8,8.5,8.8,8.5,9.2.这组数据的:①众数是  ▲ ;②中位数是  ▲ ;③方差是  ▲ .

【答案】8.5;8.5;0.196。

【考点】众数,中位数,方差。

【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是8.5,故这组数据的众数为8.5。

中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为8,8.5,8.5,8.8,9.2,∴中位数为:8.5。

∵平均数为:(8+8.5+8.8+8.5+9.2)÷5=8.6,

∴方差为: [(8﹣8.6)2+(8.5﹣8.6)2+(8.5﹣8.6)2+(8.8﹣8.6)2+(9.2﹣8.6)2]=0.196。

2. (2012广东湛江4分)掷一枚硬币,正面朝上的概率是  ▲ .

【答案】 。

【考点】概率的意义。

【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。因此,

∵掷一枚硬币的情况有2种,满足条件的为:正面一种,∴正面朝上的概率是P= 。

三、解答题

1. (2012广东省9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).

(1)用树状图或列表法表示(x,y)所有可能出现的结果;

(2)求使分式 有意义的(x,y)出现的概率;

(3)化简分式 ,并求使分式的值为整数的(x,y)出现的概率.

【答案】解:(1)用列表法表示(x,y)所有可能出现的结果如下:

-2 -1 1

-2 (-2,-2) (-1,-2) (1,-2)

-1 (-2,-1) (-1,-1) (1,-1)

1 (-2,1) (-1,1) (1,1)

(2)∵(x,y)所有可能出现的结果共有9种情况,使分式 有意义的(x,y)有(﹣1,﹣2)、(1,﹣2)、(﹣2,﹣1)、(﹣2, 1)4种情况,

∴使分式 有意义的(x,y)出现的概率是 。

(3) 。

∵在使分式 有意义的4种情况中,值为整数的(x,y)有(1,﹣2)、

(﹣2, 1)2种情况,

∴使 分式的值为整数的(x,y)出现的概率是 。

【考点】列表法或树状图法,概率分式有意义的条件,分式的化简求值。

【分析】(1)根据题意列出表或画树状图,即可表示(x,y)所有可能出现的结果。

(2)根据(1)中的表或树状图中找出使分式 有意义的情况,再除以所有情况数即可。

(3)先化简,再在使分式 有意义的4种情况中,找出使分式的值为整数的(x,y)的情况,再除以所有情况数即可。

2. (2012广东佛山6分)甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:

选手

组数 1 2 3 4 5 6 7 8 9 10

甲 98 90 87 98 99 91 92 96 98 96

乙 85 91 89 97 96 97 98 96 98 98

(1)根据上表数据,完成下列分析表:

平均数 众数 中位数 方差 极差

甲 94.5 96 15. 65 12

乙 94.5 18.65

(2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么?

【答案】解:(1)完成分析表如下:

平均数 众数 中位数 方差 极差

甲 94.5 98 96 15. 65 12

乙 94.5 98 96.5 18.65 13

(2)∵ ,∴ 。

∴甲的成绩比较稳定,∴选择甲选手参加比赛。

【考点】平均数,众数,中位数,方差,极差,统计量的选择。

【分析】(1)分别根据众数、中位数和极差的概念填充表格即可。

(2)根据题意甲乙两选手的平均成绩和成绩的方差,即可确定选择哪位选手参加比赛。

3. (2012广东佛山6分)用如图所示的三等分的圆盘转两次做“配紫色(红色+蓝色)”游戏,配出紫色的概率用公式 计算.请问:m和n分别是多少?m 和n 的意义分别是什么?

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。