您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2012年承德中考数学三模试题(附答案)

编辑:sx_zhangwl

2013-01-28

【编者按】为了丰富同学们的学习生活,精品学习网中考频道为同学们搜集整理了中考数学模拟题:2012年承德中考数学三模试题(附答案),供大家参考,希望对大家有所帮助!

2012年承德中考数学三模试题(附答案)

本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.

本试卷满分为120分,考试时间为120分钟.

卷Ⅰ(选择题,共30分)

注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.

一、选择题(本大题共12个小题;1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1. - 的相反数是 ( )

A.3 B. C. -3 D.

2. 不等式 的解集是 ( )

A. B. C. D.

3. 在一次九年级学生的视力检查中,随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是 (  )

A.这组数据的中位数是4.4 B.这组数据的众数是4.5

C.这组数据的平均数是4.3 D.这组数据的极差是0.5

4.如图1,在数轴上标有O,A,B,C,D五个点,根据图中各点所表示的数,判断 应该在下列线段的 ( )

A.OA上 B.AB上

C.BC上 D.CD上

5.如图2, 内接于 ,若 ,则 的大

小为 ( )

A.    B.    C.    D.

6.如图3,在矩形ABCD中,E,F分别是CD,BC上的点,若

∠AEF=90°,则一定有 ( )

A.△ADE∽△AEF B.△ADE∽△ECF

C.△ECF∽△AEF D.△AEF∽△ABF

7.若n( )是关于x的方程 的根,则

m+n的值为 ( )

A.-2 B.-1 C.1 D.2

8.如图4,已知Rt△ABC中,∠ABC=90°,∠BAC=30°, AC=

4cm,将△ABC绕顶点C顺时针旋转至△A/B/C的位置,且A,C,

B/三点在同一条直线上,则点A经过的路径的长度是 ( )

A.8cm B. cm C. cm D. cm

9.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x套,则根据题意可得方程为 ( )

A. B.

C. D.

10.在同一直角坐标系中,函数y=mx+m和y= -mx2+2x+2(m是常数,且m≠0)的图象可能是 ( )

11.如图5,DE是△ABC的中位线,M是DE的中点,CM的延长

线交AB于点N,则NM∶MC等于 (  )

A.1∶2 B.1∶3 C.1∶4 D.1∶5

12.在平面直角坐标系中,正方形ABCD的位置如图6所示,点A

的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点

A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2

C2C1,…按这样的规律进行下去,第2012个正方形的

面积为 ( )

A. B.

C. D.

总 分 核分人

2012年 承 德 市 初中毕业生升学文化课考试

数 学 模 拟 试 卷

卷II(非选择题,共90分)

注意事项:1.答卷II前,将密封线左侧的项目填写清楚.

2.答卷II时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.

题号 二 三

19 20 21 22 23 24 25 26

得分

二、填空题(本大题共6个小题;每小题3分,共18分.把答案

写在题中横线上)

13.计算 .

14.使 有意义的 的取值范围是 .

15.已知每个网格中小正方形的边长都是1,如图7中的阴影图

案是由三段以格点为圆心,半径分别为1和2的圆弧围成.则

阴影部分的面积是 .

16.如图8,已知双曲线 经过Rt△OAB斜边OB的中

点D,与直角边AB相交于点C.若△OBC的面积为3,则k=

.

17.填在下面图9各正方形中的四个数之间都有相同的规律,根据

这种规律,m的值是 .

18.如图10,已知边长为2的正三角形ABC,两顶点A,B分

别在平面直角坐标系的 轴、 轴的正半轴上滑动,点C在

第一象限,连结OC,则OC长的最大值是 .

三、解答题(本大题共8个小题;共72分.解答应写出文字说明、证明过程或演算步骤)

得 分 评卷人

19.(本小题满分8分)

解二元一次方程组:

20.(本小题满分8分)

如图11,在平面直角坐标系 中,点 ( ,0),点 (0, 1 ),直线EF与x轴垂直,A为垂足.

(1) 若线段AB绕点A按顺时针方向旋转到AB/的位置,并使得AB与AB/关于直线EF对称,请你画出线段AB所扫过的区域(用阴影表示);

(2) 计算(1)中线段AB所扫过区域的面积.

21.(本小题满分8分)

一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.

(1)求摸出1个球是白球的概率;

(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率;

(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为 .求n的值.

22.(本小题满分8分)

六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进了第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.

(1)求第一批玩具每套的进价是多少元?

(2)如果这两批玩具每套的售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?

23.(本小题满分9分)

如图12所示,制作 一种产品,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.

(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);

(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?

24.(本小题满分9分)

如图13-1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE, AG⊥CE.

(1)当正方形GFED绕D旋转到如图13-2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.

(2)当正方形GFED绕D旋转到如图13-3的位置,点F在边AD上,延长CE交AG于H,交AD于M.

①求证:AG⊥CH;

②当AD=4,DG= 时,求CM的长.

25.(本小题满分10分)

如图14,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E,F同时从点P出发,分别沿PA,PB以每秒1个单位长度的速度向点A,B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E,F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E,F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分面积为S.

(1)当t=1时,正方形EFGH的边长是   ,

当t=3时,正方形EFGH的边长是   ;

(2)当0

(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?

26.(本小题满分12分)

如图15,抛物线 经过A(4,0),B(1,0)两点.

(1)求出抛物线的解析式;

(2)若P是抛物线上x轴上方的一动点,过P作 轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;

(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

2012年承德市初中毕业生升学文化课考试

数学模拟试题参考答案及评分标准

一、选择题(1~6小题,每小题2分;7~12小题,每小题3分,共30分)

题 号 1 2 3 4 5 6 7 8 9 10 11 12

答 案 B C C C D B A D B D B B

二、填空题(每小题3分,共18分)

13.4; 14. ; 15. ; 16.2; 17.158; 18. .

三、解答题(本大题共8个小题;共72分)

19.解:把 代入 中得: ,

解得 .………………………………………………………………………(4分)

把 代入 中得: .

所以此二元一次方程组的解为 …………………………………………(8分)

20.解: (1) 图略;………………………………………………………………………(4分)

(2)阴影部分的面积为 . ……………………………………………………(8分)

21.解:(1)摸出1个球是白球的概率为 ;…………………………………………(2分)

(2)两次摸球的情况如下:

(白,白);(白,红1);(白,红2);(红1,白);(红1,红1);(红1,红2);

(红2,白);(红2,红1);(红2,红2);………………………………(4分)

∴P(两球颜色不同)= ;………………………………………………(6分)

(3)由题意可得 ,解得n=4.经检验,n=4是所列方程的根,∴n=4.

………………………………………………………………………………(8分)

22.解:(1)设第一批玩具每套的进价是x元,………………………………………(1分)

依据题意得 .…………………………………………(3分)

解得x=50.经检验,x=50是所列方程的解.

∴第一批玩具每套的进价是50元; ……………………………………(4分)

(2)设每套玩具的售价是a元, ……………………………………………(5分)

依据题意得 . …………………………(7分)

解得x≥70.

∴总利润不低于25%,每套售价至少是70元.………………………(8分)

23.解:(1)设加热过程中一次函数表达式为 ,………………………(1分)

该函数图像经过点 , ,得 解得

所以一次函数表达式为 ;……………………(3分)

设加热停止后反比例函数表达式为 , ………………………(4分)

该函数图像经过点 ,得 ,得 .

所以反比例函数表达式为 ;………………………(6分)

(2)在函数 中,当y=30时,得 ;

在函数 中,当y=30时,得 ;………………………(8分)

∵ ,∴对该材料进行特殊处理所用的时间为 分钟.

………………………………………………………………………(9分)

24.解:(1)成立.………………………………………………………………………(1分)

证明:四边形ABCD、四边形GFED都是正方形,∴AD=CD.DG=DE.

∵∠GDA+∠ADE=90°,∠CDE+∠ADE=90°,∴∠GAD=∠CDE.

∴△ADG≌△CDE,∴AG=CE.………………………………(5分)

(2)①证明:由(1)知:△ADG≌△CDE,∴∠GAD=∠DCE.

∵∠AMH=∠CMD,∴∠AHM=∠CDM=90°.

∴CH⊥AG.……………………………………………………(7分)

②如图,过点E作EK∥MD交CD于点K.

∵∠FDE=45°,∴∠EDK=45°.∵AD=4,DG= ,

∴EK=DK=1.CK=3.

∵△CEK∽△CMD,∴ ,∴ ,

∴ ,∴ .

…………………………………………………(9分)

25.解:(1)2,4; ……………………………………………………………………(2分)

(2)①0

S=2t×2t=4t2; …………………………………………………………(4分)

②当

S=4t2

;…………………………………………………(6分)

③当

S= ; ………………………………(8分)

(3)当t=5时,面积最大;最大面积是 .……………………………(10分)

26.解:(1)将A(4,0),B(1,0)的坐标代入

得 ………………………………………………………(2分)

解得 此抛物线的解析式为 . ……(3分)

(2)存在.………………………………………………………………………(4分)

如图,设点 的横坐标为 ,则 点的纵坐标为 ,

, .

又 ,

①当 时, .

即 .解得 (舍去), .

………………………………………………………………………………(6分)

②当 时, .即 .

解得 , (均不合题意,舍去).

∴符合条件的点 为 .……………………………………………(8分)

(3)如图,设 点的横坐标为 ,则 点的纵坐标为 .

过 作 轴的平行线交 于 .

由题意可求得直线 的解析式为 .………………………(10分)

点的坐标为 .

.

.

当 时, 面积最大. .…………………………(12分)

2012中考科目:

中考语文】【中考数学】【中考英语】【中考物理】【中考化学

中考政治】【中考历史】【中考生物】【中考地理】 【中考体育

2012中考考前: 

中考动态】【中考心理辅导】 【中考家长】【中考饮食】 【中考政策

2012中考考后:

中考动态】 【中考成绩查询】【中考志愿填报】  【中考分数线

中考录取查询】 【中考状元】【中考择校】 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。