编辑:
2013-11-13
(3)若M点是CD所在直线下方该抛物线上的一个
动点,过点M作MN平行于y轴交CD于点N.设点M
的横坐标为t,MN的长度为l.求l与t之间的函数关系
式,并求l取最大值时,点M的坐标.
25. (1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.求证:△ABM与△ABN的面积相等.
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图③,抛物线 的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线 上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.
参考答案:
一、1.A 2. B 3. C 4.D 5.C 6.B 7.D 8.A
二、9. 10. (Ⅰ) (Ⅱ)0.845 11. 12.3 13.4 14.
15. 16.①②③
三、17. 18. 19.解:(1)9种(图略) (2)
四、20. (1)
(2)日参观人数不低于22万有9天,
所占百分比为45%.
(3)世博会前20天的平均每天参观人数约为
=20.45(万人).
20.45×184=3762.8(万人)
∴估计上海世博会参观的总人数约为3762.8万人.
21.解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗 尾,由题意得:
,解这个方程,得: ∴
答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.
(2)由题意得: ,解这个不等式,得: ,即购买甲种鱼苗应不少于2000尾.
(3)设购买鱼苗的总费用为y,则 ,由题意,有 ,解得: ,在 中, ∵ ,∴y随x的增大而减少 .∴当 时, .即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.
五、22.(1)相等,证明:∵∠BEQ=30°,∠BFQ=60°,∴∠EBF=30°,∴EF=BF.
又∵∠AFP=60°,∴∠BFA=60°.
在△AEF与△ABF中,EF=BF,∠AFE=∠AFB,AF=AF,∴△AEF≌△ABF,∴AB=AE.
(2)作AH⊥PQ,垂足为H,设AE=x,
则AH=xsin74°,HE=xcos74°,HF=xcos74°+1.
Rt△AHF中,AH=HF•tan60°,∴xcos74°=(xcos74°+1)•tan60°,即0.96x=(0.28x+1)×1.73,
∴x≈3.6,即AB≈3.6 km.答:略.
23.(1)由题意,AB是⊙O的直径;∴∠ACB=90。,∵CD⊥CP,∴∠PCD=90。
∴∠ACP+∠BCD=∠PCB+∠DCB=90。,∴∠ACP=∠DCB,又∵∠CBP=∠D+∠DCB,∠CBP=∠ABP+∠ABC,∴∠ABC=∠APC,∴∠APC=∠D,∴△PCA∽△DCB;∴ ,
∴AC•CD=PC•BC
(2)当P运动到AB弧的中点时,连接AP,∵AB是⊙O的直径,∴∠APB=90。,又∵P是弧AB的中点,∴弧PA=弧PB,∴AP=BP,∴∠PAB=∠PBA=45.,又AB=5,∴PA= ,过A作AM⊥CP,垂足为M,在Rt△AMC中,∠ACM=45 ,∴∠CAM=45,∴AM=CM= ,在Rt△AMP中,AM2+AP2=PM2,∴PM= ,∴PC=PM+ = 。由(1)知:AC•CD=PC•BC ,3×CD=PC×4,∴CD=
(3)由(1)知:AC•CD=PC•BC,所以AC:BC=CP:CD;
所以CP:CD=3:4,而△PCD的面积等于 • = ,
CP是圆O的弦,当CP最长时,△PCD的面积最大,而此时C
P就是圆O的直径;所以CP=5,∴3:4=5:CD;
∴CD= ,△PCD的面积等于 • = = ;
六、24.解:(1)由题意,可设所求抛物线对应的函数关系式为
∴ ∴ ∴所求函数关系式为: (2)在Rt△ABO中,OA=3,OB=4,∴
∵四边形ABCD是菱形∴BC=CD=DA=AB=5 ∴C、D两点的坐标分别是(5,4)、(2,0).
当 时, 当 时,
∴点C和点D在所求抛物线上.
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。