您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2016中考数学备考模拟练习:矩形菱形

编辑:

2016-03-21

8.(2014•十堰9.(3分))如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为(  )

A. 2 B. C. 2 D.

考点: 勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.

分析: 根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.

解答: 解:∵AD∥BC,DE⊥BC,

∴DE⊥AD,∠CAD=∠ACB

∵点G为AF的中点,

∴DG=AG,

∴∠GAD=∠GDA,

∴∠CGD=2∠CAD,

∵∠ACD=2∠ACB,

∴∠ACD=∠CGD,

∴CD=DG=3,

在Rt△CED中,DE= =2 .

故选:C.

点评: 综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.

9. (2014•江苏徐州,第7题3分)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是(  )

A.矩形 B. 等腰梯形

C.对角线相等的四边形 D. 对角线互相垂直的四边形

考点: 中点四边形.

分析: 首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.

解答: 解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,

∴EF=FG=CH=EH,BD=2EF,AC=2FG,

∴BD=AC.

∴原四边形一定是对角线相等的四边形.

故选C.

点评: 此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.

10. (2014•山东淄博,第9题4分)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是(  )

A. 甲乙丙 B. 甲丙乙 C. 乙丙甲 D. 丙甲乙

考点: 正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.

分析: 根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.

解答: 解:∵四边形ABCD是正方形,

∴AB=BC=CD=AD,∠B=90°,

甲行走的距离是AB+BF+CF=AB+BC=2AB;

乙行走的距离是AF+EF+EC+CD;

丙行走的距离是AF+FC+CD,

∵∠B=∠ECF=90°,

∴AF>AB,EF>CF,

∴AF+FC+CD>2AB,AF+FC+CD

∴甲比丙先到,丙比乙先到,

即顺序是甲丙乙,

故选B.

点评: 本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。