您当前所在位置:首页 > 中考 > 中考数学 > 中考数学复习指导

数学因式分解方法:换元法与待定系数法

编辑:lvzw

2012-11-15

编者按:精品学习网小编为大家收集了“数学因式分解方法:换元法与待定系数法”,供大家参考,希望对大家有所帮助!

7、换元法

换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此

种方法对于某些特殊的多项式因式分解可以起到简化的效果。

例7分解因式:

(x+1)(x+2)(x+3)(x+4)-120

解析若将此展开,将十分繁琐,但我们注意到

(x+1)(x+4)=x2+5x+4

(x+2)(x+3)=x2+5x+6

故可用换元法分解此题

解原式=(x2+5x+4)(x2+5x+6)-120

令y=x2+5x+5则原式=(y-1)(y+1)-120

=y2-121

=(y+11)(y-11)

=(x2+5x+16)(x2+5x-6)

=(x+6)(x-1)(x2+5x+16)

注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单?

8、待定系数法

待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多 项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。

例7分解因式:2a2+3ab-9b2+14a+3b+20

分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法

先分解2a2+3ab+9b2=(2a-3b)(a+3b)

解设可设原式=(2a-3b+m)(a+3b+n)

=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………

比较两个多项式(即原式与*式)的系数

m+2n=14(1)m=4

3m-3n=-3(2)=>

mn=20(3)n=5

∴原式=(2x-3b+4)(a+3b+5)

注对于(*)式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n

令a=1,b=0,m+2n=14m=4

=>令a=0,b=1,m=n=-1n=5

以上就是精品学习网为大家提供的“数学因式分解方法:换元法与待定系数法”希望能对考生产生帮助,更多资料请咨询精品学习网中考频道。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。