您当前所在位置:首页 > 中考 > 中考数学 > 中考数学复习指导

初中数学复习指导之提高课堂效果

编辑:sx_jixia

2016-04-17

为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了初中数学复习指导

一、教师要深透领悟教材内容

数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的东西,就要教的透彻”。为求透彻,教师必须深钻教材,“沉下去”,理清知识发生的本原,把握教材中最主要、最本质的东西。回顾自己上过的许多的课,总感到有些许的憾意:课堂缺少耐人回味的东西,缺少引起学生思考的部分,对教材内容的领悟浅薄,缺少厚重感。本人认为要弥补这些憾意,教师对教材的领悟必须有自己的眼光,目光要深邃,看到的不能只是文字、图表和各种数学公式定理,而应是书中跳跃着的真实而鲜活的思想。这种思想就是对“数学本质”的认识,这种思想就是“不在书里,就在书里”,这种思想能让所有教材内容融入到教师的思维中,成为教学的能力源泉。“一个能思想的人,才是一个力量无边的人。”教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。

让我们来看一则例子:

若E、F、G、H分别是四边形ABCD各边的中点,说明四边形EFGH是平行四边形的理由。这是初中数学中很典型的一道题目,连接AC,利用三角形的中位线定理,很容易证明。对此我们可以进一步思考,适当地替换它的条件,再考察它的结论的变化情况。

思考1:如果把条件中的四边形ABCD依次改变为矩形、菱形、正方形或梯形、等腰梯形,其它条件不变,那么所得的四边形EFGH是怎样的四边形呢?

思考2:如果把结论中的平行四边形EFGH依次改变为矩形、菱形或正方形,那么原四边形ABCD应具备什么条件呢?

思考3:如果条件中的中点替换为定比分点,那么四边形EFGH是怎样的四边形呢?

思考4:如果把条件中一组对边的中点改为两条对角线的中点,其它条件不变,则四边形EFGH是怎样的四边形呢?

面对这么多的变化,学生肯定头疼,如果抓住了四边形ABCD的对角线是相等,还是垂直,还是既相等又垂直,还是既不相等又不垂直这一本质特征,那么这类问题就都可迎刃而解,学生掌握起来容易也乐于掌握。通过这类题目的解答,让学生领悟:数学问题千变万化,而其中的方法是相通的。学习数学重在掌握这种具有普遍意义,能反映数学本质的知识。注重问题间的类比,使解题总结成为自觉的行动,这样可以达到举一反三、由例及类,解一题通一片的目的。

这篇初中数学复习指导的内容,希望会对各位同学带来很大的帮助。

相关推荐

中考数学备考知识考点:垂线的性质 

2016中考数学考点备考资料:同类项及其合并 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。