您当前所在位置:首页 > 中考 > 四川中考 > 眉山中考 > 眉山中考数学

2014四川眉山中考数学知识点整理六

编辑:sx_fengzb

2014-01-13

精品学习网为方便考生备考,特意整理了2014四川眉山中考数学复习内容,愿天下备考人均能如意,而我,只愿面朝屏幕,继续码字……

5、四边形

平行四边形的性质:

①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。

平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。

菱形:

①一组邻边相等的平行四边形是菱形。

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:

①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。

梯形:

①一组对边平行而另一组对边不平行的四边形叫梯形。

②两条腰相等的梯形叫等腰梯形。

③一条腰和底垂直的梯形叫做直角梯形。

④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。

多边形:

①N边形的内角和等于(N-2)180度。

②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平面图形的密铺:三角形,四边形和正六边形可以密铺。

中心对称图形:

①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。

②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

B、图形与变换:

1、图形的轴对称

轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

轴对称图形:

①角的平分线上的点到这个角的两边的距离相等。

②线段垂直平分线上的点到这条线段两个端点的距离相等。

③等腰三角形的“三线合一”。

轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。

2、图形的平移和旋转

平移:

①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

旋转:

①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

3、图形的相似

比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。。=M/N,那么A+C+…+M/B+D+…N=A/B。

黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。

相似:

①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。

②相似多边形对应边的比叫做相似比。

相似三角形:

①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AAA、SSS、SAS。

相似多边形的性质:

①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。

②相似多边形的周长比等于相似比,面积比等于相似比的平方。

图形的放大与缩小:

①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

②位似图形上任意一对对应点到位似中心的距离之比等于位似比。

C、图形的坐标

平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。

总有一种力量让我们在日后回忆时能会心一笑,未来的你会感谢现在为了准备2014四川眉山中考数学复习而拼命的你。小编期待着你胜利的微笑。更多资讯请持续关注精品学习网

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。