您当前所在位置:首页 > 中考 > 浙江中考 > 温州中考 > 温州中考试题

2016浙江温州中考数学备考专项练习:弧长与扇形

编辑:

2016-02-06

考点: 圆锥的计算

分析: 易得扇形的弧长,除以2π即为圆锥的底面半径.

解答: 解:扇形的弧长= =2π,

故圆锥的底面半径为2π÷2π=1.

故选B.

点评: 考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.

7.(2014•四川自贡,第8题4分)一个扇形的半径为8cm,弧长为 cm,则扇形的圆心角为(  )

A. 60° B. 120° C. 150° D. 180°

考点: 弧长的计算

分析: 首先设扇形圆心角为x°,根据弧长公式可得: = ,再解方程即可.

解答: 解:设扇形圆心角为x°,根据弧长公式可得: = ,

解得:n=120,

故选:B.

点评: 此题主要考查了弧长计算,关键是掌握弧长计算公式:l= .

8.(2014•台湾,第16题3分)如图,、、、均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C、E在AG上,若AC=EG,OG=1,AG=2,则与两弧长的和为何?(  )

A.π B.4π3 C.3π2 D.8π5

分析:设AC=EG=a,用a表示出CE=2﹣2a,CO=3﹣a,EO=1+a,利用扇形弧长公式计算即可.

解:设AC=EG=a,CE=2﹣2a,CO=3﹣a,EO=1+a,

+=2π(3﹣a)×60°360°+2π(1+a)×60°360°=π6 (3﹣a+1+a)= 4π3.

故选B.

点评:本题考查了弧长的计算,熟悉弧长的计算公式是解题的关键.

9. (2014•浙江金华,第10题4分)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是【 】

A.2 B. 5C.3 D.6

【答案】A.

【解析】

故选A.

考点:1. 等腰直角三角形的判定和性质;2. 勾股定理;3. 扇形面积和圆面积的计算.

10.(2014•浙江宁波,第5题4分)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是( )

A. 6π B. 8π C. 12π D. 16π

考点: 圆锥的计算

专题: 计算题.

分析: 根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.

解答: 解:此圆锥的侧面积= •4•2π•2=8π.

故选B.

点评: 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

11. (2014•海南,第11题3分)一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为(  )

A. 2cm B.1 cm C. 3cm D. 4cm

考点: 弧长的计算..

专题: 压轴题.

分析: 利用弧长公式和圆的周长公式求解.

解答: 解:设此圆锥的底面半径为r,

根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:

2πr= ,

r= cm.

故选A.

点评: 圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.

12. (2014•黑龙江龙东,第17题3分)一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)(  )

A. 10πcm B. 10 cm C. 5πcm D. 5 cm

考点: 平面展开-最短路径问题;圆锥的计算..

分析: 利用圆锥侧面展开图的弧长等于底面圆的周长,进而得出扇形圆心角的度数,再利用勾股定理求出AA′的长.

解答: 解:由题意可得出:OA=OA′=10cm,

= =5π,

解得:n=90°,

∴∠AOA′=90°,

∴AA′= =10 (cm),

故选:B.

点评: 此题主要考查了平面展开图的最短路径问题,得出∠AOA′的度数是解题关键.

13. (2014•湖北宜昌,第13题3分)如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则 的长为(  )

A. π B. 6π C. 3π D. 1.5π

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。