您当前所在位置:首页 > 考研 > 考研大纲

2014考研数学:高数的8大重难点分析

编辑:

2013-08-20

 5、多元函数微分学

  ①了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质②理解多元函数偏导数和全微分的概念,会求全微分。③理解方向导数与梯度的概念并掌握其计算方法。④掌握多元复合函数偏导数的求法,会求隐函数的偏导数。⑤了解曲线的切线和法平面及曲面的切平面和法线的概念,掌握二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求多元函数的最大值和最小值及一些简单的应用问题。重点是二元函数的极限和连续的概念,偏导数与全重点是二元函数的极限和连续的概念,偏导数与全微分的概念及计算复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度的概念及其计算。空间曲线的切线和法平面,曲面的切平面和法线,二元函数极值。难点是多元复合函数的求导法,二函数的泰勒公式。

  6、多元函数积分学

  ①理解二重积分与三重积分的概念,了解重积分的性质。②掌握二重积分(直角坐标、极坐标)的计算方法,会计算三重积分(直角坐标、柱面坐标、球面坐标)。③理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;掌握计算两类曲线积分的方法;掌握格林公式并会运用平面曲线积分与路径无关的条件。④了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。⑤会用重积分、曲线积分和曲面积分求一些几何量和物理量。重点是利用直角坐标、极坐标计算二重积分。利用直角坐标、柱面坐标、球面坐标计算三重积分。两类曲线积分的概念、性质及计算,格林公式。两类曲面积分的概念、性质及计算,高斯公式。难点是化二重积分为二次积分、改换二次积分的积分次序以及三重积分计算。第二类曲面积分与斯托克斯公式。

  7、无穷级数

  ①掌握级数的基本性质及其级数收敛的必要条件,掌握几何级数与p级数的收敛性;掌握比值审敛法,会用正项级数的比较与根值审敛法。②会用交错级数的莱布尼兹定理,了解绝对收敛和条件收敛的概念及它们的关系。③会求幂级数的和函数以及数项级数的和,掌握幂级数收敛域的求法④掌握ex、sinx、cosx、ln(1+x),(1+x)α的马克劳林展开式,会用它们将简单函数作间接展开;会将定义在[-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数。重点是数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念。幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数。难点是求幂级数的和函数,将函数展成幂级数、傅立叶级数。

  8常微分方程

  ①了解微分方程及其解、阶、通解、初始条件和特解等概念;掌握变量可分离方程及一阶线性方程的解法。②会用降阶法解y(n)=f(x),y″=f(x,y),y″=f(y,y’)类的方程;理解线性微分方程解的性质和解的结构。③掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。④会解包含两个未知函数的一阶常系数线性微分方程组。重点是微分方程的概念,变量可分离方程,一阶线性微分方程及二阶的常系数线性微分方程的解法。难点是由实际问题建立微分方程及确定定解条件。

  以上八点几乎涵盖了考研数学所有重点知识,考生如能掌握以上知识,并能融会贯通,那五个考生易出现的错误基本可以得到很好解决。

以上就是小编为您整理的2014考研数学:高数的8大重难点分析,更多关于2014年考研信息请点击精品学习网考研大纲

标签:考研大纲

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。